Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1786
Question Number 30570 Answers: 0 Comments: 0
$${find}\:\int\int_{{U}} \:\frac{{dxdy}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:{with}\:{U}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\mathrm{1}\leqslant{x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \leqslant\mathrm{4}\right\} \\ $$
Question Number 30569 Answers: 0 Comments: 0
$${find}\:{I}=\:\int\int_{{D}} \:\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}\:\:{dxdy}\:\:{with}\:{D}\:{is}\:{the}\:{interior} \\ $$$${of}\:{ellipce}\:\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\mathrm{1}. \\ $$
Question Number 30568 Answers: 0 Comments: 0
$${find}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}}\:. \\ $$
Question Number 30567 Answers: 0 Comments: 0
$${integrate}\:{xy}^{,} \:+\left({x}−\mathrm{1}\right){y}\:+{y}^{\mathrm{2}} =\mathrm{0} \\ $$
Question Number 30566 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:{A}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\alpha−\mathrm{1}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:{and} \\ $$$${find}\:{its}\:{value}. \\ $$
Question Number 30565 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{{n}!}\left({px}−{qx}^{\mathrm{2}} \right)^{{n}} \:\:\:{find}\:{maxf}\:\:. \\ $$
Question Number 30564 Answers: 0 Comments: 0
$${f}\:{and}\:{g}\:{are}\:\mathrm{2}\:{function}\:\:{C}^{{n}} \:{on}\:\left[{a},{b}\right]\:{prove}\:{that} \\ $$$$\int_{{a}} ^{{b}} \:{f}^{\left({n}\right)} \left({x}\right){g}\left({x}\right){dx}=\left[\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} \:{f}^{\left({k}\right)} {g}^{\left({n}−{k}\right)} \right]_{{a}} ^{{b}} \:+\left(−\mathrm{1}\right)^{{n}} \int_{{a}} ^{{b}} {f}\left({x}\right){g}^{\left({n}\right)} \left({x}\right){dx} \\ $$
Question Number 30563 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\mid{x}−\mathrm{2}\:\left[\frac{{x}+\mathrm{1}}{\mathrm{2}}\right]\mid \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}\:{is}\:{periodic} \\ $$$$\left.\mathrm{2}\right)\:{simplify}\:{f}\left({x}\right)\:{if}\:{p}\leqslant{x}+\mathrm{1}\:{and}\:{p}\in{Z}\:. \\ $$
Question Number 30560 Answers: 0 Comments: 0
$${study}\:{the}\:{roots}\:{of}\:{f}_{{n}} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\:\frac{{x}^{{k}} }{{k}!}\:. \\ $$
Question Number 30559 Answers: 0 Comments: 0
$${find}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt}\:\:. \\ $$
Question Number 30558 Answers: 0 Comments: 0
$${find}\:{I}=\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\:{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\:\:{dx}\:\:.\right. \\ $$
Question Number 30557 Answers: 0 Comments: 0
$${if}\:\varphi\:{convexe}\:{and}\:{f}\:{continue}\:{on}\:\left[{a},{b}\right]\:{prove}\:{that} \\ $$$$\varphi\left(\:\frac{\mathrm{1}}{{b}−{a}}\:\int_{{a}} ^{{b}} \:{f}\left({t}\right){dt}\right)\leqslant\:\frac{\mathrm{1}}{{b}−{a}}\:\int_{{a}} ^{{b}} \:\varphi{of}\left({t}\right){dt}. \\ $$
Question Number 30556 Answers: 0 Comments: 0
$${let}\:\:{S}_{{n}} \left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{{sin}\left({kx}\right)}{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)}\:\:{find}\:{lim}_{{n}\rightarrow\infty} {S}_{{n}} \left({x}\right). \\ $$
Question Number 30555 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\sqrt{\mathrm{1}−{t}^{\mathrm{4}} }}\:. \\ $$
Question Number 30554 Answers: 0 Comments: 0
$${find}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{xcos}\theta\:+\mathrm{1}}{{x}^{\mathrm{2}} \:+\mathrm{2}{xcos}\theta\:+\mathrm{1}}{dx}\:. \\ $$
Question Number 30553 Answers: 0 Comments: 3
$${find}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \left(\mathrm{1}+{sinx}\right)^{{x}} \:−\left(\mathrm{1}+{x}\right)^{{sinx}} . \\ $$
Question Number 30552 Answers: 0 Comments: 0
$${find}\:{s}\left({x}\right)=\:\sum_{{n}\geqslant\mathrm{0}} \:\frac{{sin}\left({na}\right)}{\left({sina}\right)^{{n}} }\:\frac{{x}^{{n}} }{{n}!}\:{and}\: \\ $$$${T}\left({x}\right)\:=\sum_{{n}\geqslant\mathrm{0}} \:\:\frac{{cos}\left({na}\right)}{\left({sina}\right)^{{n}} }\:\frac{{x}^{{n}} }{{n}!}\:. \\ $$
Question Number 30551 Answers: 0 Comments: 0
$$\:{find}\:\:{S}\:=\:\sum_{{n}\geqslant\mathrm{3}} \:\:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}−\mathrm{2}\right)\mathrm{2}^{{n}} }\:. \\ $$
Question Number 30550 Answers: 0 Comments: 0
$${let}\:{f}\left({z}\right)=\:\sum_{{n}\geqslant\mathrm{0}} {a}_{{n}} {z}^{{n}} \:\:\:/{a}_{\mathrm{0}} =\mathrm{1}\:,{a}_{\mathrm{1}} =\mathrm{3}\:{and}\:\forall{n}\geqslant\mathrm{2} \\ $$$${a}_{{n}} =\mathrm{3}{a}_{{n}−\mathrm{1}} −\mathrm{2}\:{a}_{{n}−\mathrm{2}} \:\:\:\:{find}\:{f}\left({z}\right)\:{for}\:\mid{z}\mid<\mathrm{1}\:\:\left({z}\in{C}\right)\:. \\ $$
Question Number 30549 Answers: 0 Comments: 0
$${let}\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{3}{n}} }{\left(\mathrm{3}{n}\right)!}\:\:{find}\:{S}\left({x}\right). \\ $$
Question Number 30548 Answers: 0 Comments: 0
$${let}\:{put}\:\:{for}\:\mid\lambda\mid<\mathrm{1}\:\:\:\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{cos}\left({nx}\right)}{\mathrm{1}−\mathrm{2}\lambda{cosx}\:+\lambda^{\mathrm{2}} }{dx}\: \\ $$$${find}\:{u}_{{n}} \:{interms}\:{of}\:{n}\:{and}\:\lambda. \\ $$
Question Number 30547 Answers: 0 Comments: 0
$${ind}\:{S}=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{n}^{\mathrm{3}} \:+{n}^{\mathrm{2}} \:+{n}+\mathrm{1}}{{n}!}\:\:. \\ $$
Question Number 30546 Answers: 0 Comments: 0
$${find}\:{I}\:=\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{{x}^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 30545 Answers: 0 Comments: 0
Question Number 30544 Answers: 0 Comments: 0
$${find}\:{I}=\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{t}}{\mathrm{2}+{sint}}{dt}. \\ $$
Question Number 30543 Answers: 1 Comments: 1
Pg 1781 Pg 1782 Pg 1783 Pg 1784 Pg 1785 Pg 1786 Pg 1787 Pg 1788 Pg 1789 Pg 1790
Terms of Service
Privacy Policy
Contact: info@tinkutara.com