Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1786
Question Number 30456 Answers: 1 Comments: 0
$${proof}\:{that} \\ $$$$\frac{{a}^{\mathrm{2}} }{\left({a}−{b}\right)\left({a}−{c}\right)}+\frac{{b}^{\mathrm{2}} }{\left({b}−{c}\right)\left({b}−{a}\right)}+\frac{{c}^{\mathrm{2}} }{\left({c}−{a}\right)\left({c}−{b}\right)}=\:{a}+{b}+{c} \\ $$
Question Number 30455 Answers: 0 Comments: 5
Question Number 30454 Answers: 0 Comments: 0
$$\mathrm{organic}\:\mathrm{conversion}:\mathrm{acetic}\:\mathrm{acid}\:\mathrm{from}\:\:\mathrm{2}−\mathrm{methyle}\:\mathrm{propane}−\mathrm{2}−\mathrm{ole} \\ $$
Question Number 30443 Answers: 0 Comments: 0
$${let}\:\:{w}_{{n}} \left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{x}^{{k}} }{{k}}\:\:{find}\:{w}_{{n}} \left({x}\right)\:{for}\:\mid{x}\mid<\mathrm{1}\: \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} {w}_{{n}} \left({x}\right). \\ $$
Question Number 30442 Answers: 3 Comments: 2
$${prove}\:{that}\:\:\:\frac{\mathrm{1}}{{e}}\:\leqslant\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\left({x}−\left[{x}\right]\right)^{\mathrm{2}} } \:{dx}\leqslant\mathrm{1}. \\ $$
Question Number 30441 Answers: 1 Comments: 0
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]^{\mathrm{2}} } =\:\sum_{{n}\geqslant\mathrm{0}} \:{e}^{−{n}^{\mathrm{2}} } . \\ $$
Question Number 30440 Answers: 0 Comments: 0
$${if}\:\:\:\left(\sum_{{n}\geqslant\mathrm{1}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{{x}} }\right)^{\mathrm{2}} =\:\sum_{{n}} \:\:{c}_{{n}\:} \left({x}\right)\:\:{find}\:{c}_{{n}} \left({x}\right). \\ $$
Question Number 30439 Answers: 0 Comments: 0
$${let}\:{F}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{{x}} }\:\:{calculate}\:\frac{{dF}}{{dx}}\left({x}\right). \\ $$
Question Number 30438 Answers: 0 Comments: 0
$${let}\:\xi\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:{prove}\:{that}\: \\ $$$$\xi\left({x}\right)=\:\gamma\:+\frac{\mathrm{1}}{{x}−\mathrm{1}}\:+{o}\left(\mathrm{1}\right). \\ $$
Question Number 30435 Answers: 0 Comments: 0
$${let}\:\:{f}_{{n}} \left({x}\right)=\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \:\:{calculate}\:\:\int_{\mathrm{1}} ^{{e}} \:{f}_{{n}} \left({x}\right){dx}. \\ $$
Question Number 30434 Answers: 0 Comments: 0
$${find}\:{the}\:{nature}\:{of}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{x}^{{n}!} \:. \\ $$
Question Number 30433 Answers: 0 Comments: 0
$${find}\:{the}\:{nature}\:{of}\:{the}\:{serie}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{n}^{\mathrm{2}{n}} }{\left({n}!\right)^{\mathrm{2}} }\:. \\ $$
Question Number 30432 Answers: 0 Comments: 0
$${find}\:\:{lim}_{{n}\rightarrow\infty\:} \sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{k}}{{n}}{e}^{−\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }} \:\:\:. \\ $$
Question Number 30431 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{x}^{{n}} }{\mathrm{1}−{x}^{{n}} }\:\:{with}\:{x}\in\left[\mathrm{0},\mathrm{1}\left[\:\:{prove}\:{that}\right.\right. \\ $$$${f}\left({x}\right)\sim_{{x}\rightarrow\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}−\mathrm{1}}. \\ $$
Question Number 30429 Answers: 0 Comments: 1
$${What}\:{are}\:{the}\:{conditions}\:{for}\:{using} \\ $$$${L}'{hospital}\:{rule}? \\ $$
Question Number 30428 Answers: 0 Comments: 0
$${integrate}\:\:\left(\mathrm{1}+{t}^{\mathrm{2}} \right){y}^{'} ={ty}\:+\mathrm{1}+{t}^{\mathrm{2}} . \\ $$
Question Number 30427 Answers: 0 Comments: 6
Question Number 30426 Answers: 0 Comments: 0
$${find}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:{with}\:{n}\:{integr}. \\ $$
Question Number 30424 Answers: 0 Comments: 0
$${find}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{{n}} }{\mathrm{3}{n}+\mathrm{2}}\:\:\:{for}\:\:\mid{x}\mid<\mathrm{1}\:\:{then}\:{find}\: \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{3}{n}+\mathrm{2}\right)\mathrm{2}^{{n}} }\:. \\ $$
Question Number 30423 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sint}}{{t}^{\alpha} }{dt}\:.\:\alpha{from}\:{R}. \\ $$
Question Number 30422 Answers: 0 Comments: 0
$${integrate}\:{the}\:{d}.{e}.\:{y}^{'} \:\mathrm{2}{ty}=\:{sint} \\ $$
Question Number 30421 Answers: 1 Comments: 0
$${integrate}\:{y}^{'} −\mathrm{2}{ty}\:+{ty}^{\mathrm{2}} =\mathrm{0} \\ $$
Question Number 30420 Answers: 1 Comments: 0
$${integrate}\:{y}^{''} =\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+\left({y}^{'} \right)^{\mathrm{2}} }\:\:\:\:\:. \\ $$
Question Number 30419 Answers: 1 Comments: 0
$${integrate}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{'} \:+{xy}\:−\mathrm{2}{x}=\mathrm{0}\:{with}\:{cond}.{y}\left(\mathrm{1}\right)=\mathrm{0} \\ $$
Question Number 30418 Answers: 0 Comments: 0
$${integrate}\:{y}^{'} \:−\mathrm{2}{xy}\:=\:{sinx}\:{e}^{{x}^{\mathrm{2}} } \:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{1}. \\ $$
Question Number 30417 Answers: 0 Comments: 0
$${integrate}\:{the}\:{d}.{e}.\:\:\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{'} \:−\mathrm{2}{x}\:{y}\:=\:{e}^{−{x}^{\mathrm{2}} } . \\ $$
Pg 1781 Pg 1782 Pg 1783 Pg 1784 Pg 1785 Pg 1786 Pg 1787 Pg 1788 Pg 1789 Pg 1790
Terms of Service
Privacy Policy
Contact: info@tinkutara.com