Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1786

Question Number 28879    Answers: 0   Comments: 0

find the value of Σ_(n=1) ^(+∞) ((cos(nπx))/n^2 ) with 0<x<1.

$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\:\frac{{cos}\left({n}\pi{x}\right)}{{n}^{\mathrm{2}} }\:{with}\:\:\mathrm{0}<{x}<\mathrm{1}. \\ $$

Question Number 28876    Answers: 0   Comments: 1

Evaluate (i) lim_(x→−∞) ((2−3x)/(√(3+4x^2 ))) (ii) lim_(x→+∞) ((2−3x)/(√(3+4x^2 )))

$$\mathcal{E}{valuate} \\ $$$$\left(\mathrm{i}\right)\:\:\underset{{x}\rightarrow−\infty} {{lim}}\:\:\frac{\mathrm{2}−\mathrm{3x}}{\sqrt{\mathrm{3}+\mathrm{4x}^{\mathrm{2}} }} \\ $$$$\left(\mathrm{ii}\right)\:\:\underset{{x}\rightarrow+\infty} {{lim}}\:\:\frac{\mathrm{2}−\mathrm{3x}}{\sqrt{\mathrm{3}+\mathrm{4x}^{\mathrm{2}} }} \\ $$

Question Number 28858    Answers: 0   Comments: 1

Question Number 28857    Answers: 1   Comments: 0

Question Number 28856    Answers: 0   Comments: 0

Question Number 28854    Answers: 0   Comments: 0

The arms of an ac maxwell bridge are arranged as follows: AB is a non - active resistance of 1000 Ω in parallel with a capacitor of capacitance of 0.5μF , BC is a non - inductive resistance of 600 Ω, CD is inductive impedance (unknown) and DA is a non - inductive resustance of 400 Ω. If balance is obtained under these conditions. Find the value of the resistance and the inductance of the branch CD and show the circuit diagram.

$$\mathrm{The}\:\mathrm{arms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{ac}\:\mathrm{maxwell}\:\mathrm{bridge}\:\mathrm{are}\:\mathrm{arranged}\:\mathrm{as}\:\mathrm{follows}:\:\:\mathrm{AB}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:-\:\mathrm{active} \\ $$$$\mathrm{resistance}\:\mathrm{of}\:\:\:\mathrm{1000}\:\Omega\:\:\mathrm{in}\:\mathrm{parallel}\:\mathrm{with}\:\mathrm{a}\:\mathrm{capacitor}\:\mathrm{of}\:\mathrm{capacitance}\:\mathrm{of}\:\:\:\mathrm{0}.\mathrm{5}\mu\mathrm{F}\:, \\ $$$$\mathrm{BC}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:-\:\mathrm{inductive}\:\mathrm{resistance}\:\mathrm{of}\:\:\mathrm{600}\:\Omega,\:\:\:\mathrm{CD}\:\mathrm{is}\:\mathrm{inductive}\:\mathrm{impedance}\:\left(\mathrm{unknown}\right) \\ $$$$\mathrm{and}\:\mathrm{DA}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:-\:\mathrm{inductive}\:\mathrm{resustance}\:\mathrm{of}\:\:\mathrm{400}\:\Omega.\:\:\mathrm{If}\:\mathrm{balance}\:\mathrm{is}\:\mathrm{obtained}\:\mathrm{under} \\ $$$$\mathrm{these}\:\mathrm{conditions}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{resistance}\:\mathrm{and}\:\mathrm{the}\:\mathrm{inductance}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{branch}\:\:\mathrm{CD}\:\:\mathrm{and}\:\mathrm{show}\:\mathrm{the}\:\mathrm{circuit}\:\mathrm{diagram}. \\ $$

Question Number 28852    Answers: 0   Comments: 0

Testing of a Bakelite sample by schering Bridge having a standard capacitor of 106pF , balance was obtained with a capacitance of 0.351 F in parallel with non - inductive resistance in the remaining arm of the bridge being 130 Ω. Determine the capacitance and the equivalent series resistance of the specimen and draw the circuit diagram.

$$\mathrm{Testing}\:\mathrm{of}\:\mathrm{a}\:\mathrm{Bakelite}\:\mathrm{sample}\:\mathrm{by}\:\mathrm{schering}\:\mathrm{Bridge}\:\mathrm{having}\:\mathrm{a}\:\mathrm{standard}\:\mathrm{capacitor} \\ $$$$\mathrm{of}\:\:\mathrm{106pF}\:,\:\:\mathrm{balance}\:\mathrm{was}\:\mathrm{obtained}\:\mathrm{with}\:\mathrm{a}\:\mathrm{capacitance}\:\mathrm{of}\:\:\:\mathrm{0}.\mathrm{351}\:\mathrm{F}\:\:\mathrm{in}\:\mathrm{parallel} \\ $$$$\mathrm{with}\:\mathrm{non}\:-\:\mathrm{inductive}\:\mathrm{resistance}\:\mathrm{in}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{arm}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bridge}\:\mathrm{being}\:\:\:\mathrm{130}\:\Omega. \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{capacitance}\:\mathrm{and}\:\mathrm{the}\:\mathrm{equivalent}\:\mathrm{series}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{specimen} \\ $$$$\mathrm{and}\:\mathrm{draw}\:\mathrm{the}\:\mathrm{circuit}\:\mathrm{diagram}. \\ $$

Question Number 28833    Answers: 0   Comments: 0

let give ϕ(x) =x ,ϕ 2π periodique even developp f at fourier series then find the value of Σ_(n=1) ^∞ (((−1)^n )/n^2 ) and Σ_(n=0) ^∞ (1/((2n+1)^2 )) .

$${let}\:{give}\:\varphi\left({x}\right)\:={x}\:,\varphi\:\mathrm{2}\pi\:{periodique}\:{even} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{series}\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }\:{and}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 28832    Answers: 0   Comments: 0

find the value of A_n = ∫_1 ^(+∞) (dt/(t^(n+1) (√(t−1)))) .withn∈N .

$${find}\:{the}\:{value}\:{of}\:\:{A}_{{n}} =\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{t}^{{n}+\mathrm{1}} \sqrt{{t}−\mathrm{1}}}\:.{withn}\in{N}\:. \\ $$

Question Number 28835    Answers: 1   Comments: 4

Question Number 28830    Answers: 0   Comments: 0

let give f(x)= ch(αx) and 2π periodic with α≠0 developp f at fourier series.

$${let}\:{give}\:{f}\left({x}\right)=\:{ch}\left(\alpha{x}\right)\:{and}\:\mathrm{2}\pi\:{periodic}\:{with}\:\alpha\neq\mathrm{0} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{series}. \\ $$

Question Number 28828    Answers: 0   Comments: 0

find f(x)=∫_0 ^1 ln(1+xt^2 )dt with ∣x∣<1 .

$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right){dt}\:{with}\:\mid{x}\mid<\mathrm{1}\:. \\ $$

Question Number 28827    Answers: 0   Comments: 0

let give F(x)=∫_0 ^∞ ((arctan(1+x(1+t^2 )))/(1+t^2 ))dt and x>0 calculate (dF/dx)(x).

$${let}\:{give}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:{and}\:{x}>\mathrm{0} \\ $$$${calculate}\:\frac{{dF}}{{dx}}\left({x}\right).\:\: \\ $$

Question Number 28826    Answers: 0   Comments: 0

let give f(x)= e^(−x) cosx and 2π periodic 1) developp f at fourier series 2) find the value of Σ_(n=−∞) ^(n=+∞) (((−1)^n )/(1+n^2 )) .

$${let}\:{give}\:{f}\left({x}\right)=\:{e}^{−{x}} \:{cosx}\:\:{and}\:\mathrm{2}\pi\:{periodic} \\ $$$$\left.\mathrm{1}\right)\:{developp}\:{f}\:{at}\:{fourier}\:{series} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=−\infty} ^{{n}=+\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{1}+{n}^{\mathrm{2}} }\:. \\ $$

Question Number 28825    Answers: 0   Comments: 0

let give f(x)= e^(−x) cosx prove that f(x)= Σ_(n=0) ^∞ ((((√2))^n )/(n!)) cos(((3nπ)/4)) x^n .

$${let}\:{give}\:{f}\left({x}\right)=\:{e}^{−{x}} \:{cosx}\:{prove}\:{that} \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(\sqrt{\mathrm{2}}\right)^{{n}} }{{n}!}\:{cos}\left(\frac{\mathrm{3}{n}\pi}{\mathrm{4}}\right)\:{x}^{{n}} \:\:. \\ $$

Question Number 28824    Answers: 0   Comments: 0

by using residus theorem find the value of A_n = ∫_0 ^∞ (dx/(1+x^n )) with n integr and n≥2.

$${by}\:{using}\:{residus}\:{theorem}\:{find}\:{the}\:{value}\:{of} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{{n}} }\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2}. \\ $$

Question Number 28823    Answers: 0   Comments: 0

find I = ∫_(−∞) ^(+∞) (((x−1)cosx)/(x^2 −2x+2))dx and J= ∫_(−∞) ^(+∞) (((x−1)sinx)/(x^2 −2x +2)) dx.

$${find}\:\:{I}\:=\:\int_{−\infty} ^{+\infty} \:\:\frac{\left({x}−\mathrm{1}\right){cosx}}{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}}{dx}\:{and} \\ $$$${J}=\:\int_{−\infty} ^{+\infty} \:\:\frac{\left({x}−\mathrm{1}\right){sinx}}{{x}^{\mathrm{2}} −\mathrm{2}{x}\:+\mathrm{2}}\:{dx}. \\ $$

Question Number 28821    Answers: 0   Comments: 0

find the value of ∫_0 ^(2π) ((4 cos(4θ))/(5−4cosθ)) dθ .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{4}\:{cos}\left(\mathrm{4}\theta\right)}{\mathrm{5}−\mathrm{4}{cos}\theta}\:{d}\theta\:. \\ $$

Question Number 28820    Answers: 0   Comments: 0

find the value of ∫_0 ^1 ((ln(1−(t^2 /4)))/t^2 )dt.

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{4}}\right)}{{t}^{\mathrm{2}} }{dt}. \\ $$

Question Number 28819    Answers: 0   Comments: 0

let give f(x)= ∫_0 ^1 ((ln(1−x^2 t^2 ))/t^2 )dt with ∣x∣<1 by using derivation under ∫ find the value of f(x).

$${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} {t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt}\:\:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${by}\:{using}\:{derivation}\:{under}\:\int\:\:{find}\:{the}\:{value}\:{of}\:{f}\left({x}\right). \\ $$

Question Number 28818    Answers: 0   Comments: 0

prove that (π/(4cos(((πα)/2))))=Σ_(p=0) ^∞ (((2p+1)(−1)^p )/((2p+1)^2 −α^2 )) α ∈R−Z.

$${prove}\:{that}\:\:\frac{\pi}{\mathrm{4}{cos}\left(\frac{\pi\alpha}{\mathrm{2}}\right)}=\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(\mathrm{2}{p}+\mathrm{1}\right)\left(−\mathrm{1}\right)^{{p}} }{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} \:−\alpha^{\mathrm{2}} } \\ $$$$\alpha\:\in{R}−{Z}. \\ $$

Question Number 28817    Answers: 0   Comments: 0

let give f(x)=e^(iαx) 2π prriodic and α ∈R−Z developp f at fourier series.

$${let}\:{give}\:{f}\left({x}\right)={e}^{{i}\alpha{x}} \:\:\mathrm{2}\pi\:{prriodic}\:{and}\:\alpha\:\in{R}−{Z} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{series}. \\ $$

Question Number 28816    Answers: 0   Comments: 0

find the value of I= ∫_0 ^π (dθ/(1+cos^4 θ)) .

$${find}\:{the}\:{value}\:{of}\:\:{I}=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{d}\theta}{\mathrm{1}+{cos}^{\mathrm{4}} \theta}\:. \\ $$

Question Number 28815    Answers: 1   Comments: 0

find the value of ∫_0 ^π (dx/(2cos^2 x +sin^2 x)) .

$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{2}{cos}^{\mathrm{2}} {x}\:+{sin}^{\mathrm{2}} {x}}\:. \\ $$

Question Number 28814    Answers: 0   Comments: 2

find Σ_(n=1) ^∞ (1/(1^3 +2^3 +...+n^3 )) .

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} \:+\mathrm{2}^{\mathrm{3}} +...+{n}^{\mathrm{3}} }\:. \\ $$

Question Number 28813    Answers: 0   Comments: 0

let give F(t)=∫_0 ^∞ ((sin(x^2 ))/x^2 ) e^(−tx^2 ) dx with t>0 find (dF/dt)(t).

$${let}\:{give}\:{F}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }\:{e}^{−{tx}^{\mathrm{2}} } {dx}\:\:{with}\:{t}>\mathrm{0} \\ $$$${find}\:\:\frac{{dF}}{{dt}}\left({t}\right). \\ $$$$ \\ $$

  Pg 1781      Pg 1782      Pg 1783      Pg 1784      Pg 1785      Pg 1786      Pg 1787      Pg 1788      Pg 1789      Pg 1790   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com