Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1781
Question Number 30414 Answers: 0 Comments: 0
$${find}\:\:{the}\:{value}\:{of}\:\:\sum_{{p}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{p}\:\:} \:\frac{{C}_{{n}} ^{{p}} }{{p}+\mathrm{1}}\:. \\ $$
Question Number 30413 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\:{A}\left(\alpha\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({t}\right)\:{arctant}}{{t}^{\alpha} }{dt} \\ $$
Question Number 30412 Answers: 0 Comments: 0
$$\left.{f}\left.\:{is}\:{a}\:{function}\:{increazing}\left({or}\:{decreazing}\right){on}\:\right]\mathrm{0},\mathrm{1}\right] \\ $$$${prove}\:{that}\:{lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}\sum_{{q}=\mathrm{1}} ^{{n}} {f}\left(\frac{{q}}{{n}}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}. \\ $$$$ \\ $$
Question Number 30411 Answers: 0 Comments: 0
$${solve}\:{the}\:{d}.{e}.\:{y}+{x}\:\left({y}^{'} \right)^{\mathrm{3}} =\mathrm{0} \\ $$
Question Number 30409 Answers: 0 Comments: 0
$${find}\:{lim}_{{n}\rightarrow\infty} \:\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\:{x}^{{i}+{j}} \:\:.{with}\:\mid{x}\mid<\mathrm{1}\:\:. \\ $$
Question Number 30408 Answers: 0 Comments: 0
$${integrate}\:{the}\:{d}.{e}.\:{y}^{'} {sinx}\:−\mathrm{2}{y}\:{cosx}={e}^{−{x}} . \\ $$
Question Number 30407 Answers: 0 Comments: 0
$${let}\:{give}\:{s}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} {nx}^{{n}} \:\:{and}\:{w}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}}{x}^{{n}−\mathrm{1}} \:\:{for}\mid{x}\mid<\mathrm{1} \\ $$$${find}\:{s}\left({x}\right).{w}\left({x}\right)\:{at}\:{form}\:{of}\:{series} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{s}\left({x}\right).{w}\left({x}\right)\:{at}\:{form}\:{of}\:{function}. \\ $$
Question Number 30425 Answers: 1 Comments: 0
$${decompose}\:{inside}\:{R}\left[{x}\right]\: \\ $$$${F}\left({x}\right)=\:\:\:\frac{{x}^{\mathrm{2}{n}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\:\:\:{with}\:{n}\:{from}\:{N}\:{and}\:{n}>\mathrm{0}. \\ $$
Question Number 30405 Answers: 1 Comments: 0
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{13} \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{xy}+{y}^{\mathrm{2}} =\mathrm{35} \\ $$$${find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{y} \\ $$
Question Number 30401 Answers: 0 Comments: 0
$${is}\:{there}\:{exists}\:{a}\:{onto}\:{group}\:{homo}\:{from}\:{D}\mathrm{4}\:{to}\:{Z}\mathrm{4}? \\ $$
Question Number 30390 Answers: 0 Comments: 5
Question Number 30377 Answers: 1 Comments: 1
Question Number 30373 Answers: 0 Comments: 4
Question Number 30436 Answers: 1 Comments: 1
$${let}\:\varphi\left({x}\right)=\mathrm{1}−\mathrm{2}^{\mathrm{1}−{x}} \:\:{prove}\:{that} \\ $$$$\varphi\left({x}\right)=\left({x}−\mathrm{1}\right){ln}\mathrm{2}\:−\frac{\left({ln}\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{2}}\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:+{o}\left(\left({x}−\mathrm{1}\right)^{\mathrm{2}} \right). \\ $$
Question Number 30367 Answers: 0 Comments: 7
Question Number 30366 Answers: 0 Comments: 1
Question Number 30364 Answers: 1 Comments: 2
Question Number 30356 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{sin}\:\mathrm{2}\theta=\:\mathrm{cos}\:\mathrm{3}\theta\:\:\mathrm{and}\:\theta\:\mathrm{is}\:\mathrm{an}\:\mathrm{acute} \\ $$$$\mathrm{angle},\:\mathrm{then}\:\mathrm{sin}\:\theta\:\mathrm{equals} \\ $$
Question Number 30355 Answers: 2 Comments: 0
Question Number 30354 Answers: 1 Comments: 0
$$\mathrm{If}\:\:{g}\left({x}\right)=\overset{{x}} {\int}_{\mathrm{0}} \mathrm{cos}^{\mathrm{4}} {t}\:{dt},\:\mathrm{then}\:{g}\:\left({x}+\pi\right)\:= \\ $$
Question Number 30350 Answers: 1 Comments: 0
Question Number 30331 Answers: 2 Comments: 0
Question Number 30340 Answers: 1 Comments: 0
Question Number 30321 Answers: 0 Comments: 3
$$\int_{−\infty} ^{\infty} \frac{\mathrm{e}^{\mathrm{a}{x}} }{\mathrm{e}^{{x}} +\mathrm{1}}{dx}=? \\ $$
Question Number 30323 Answers: 0 Comments: 0
Question Number 30299 Answers: 1 Comments: 5
Pg 1776 Pg 1777 Pg 1778 Pg 1779 Pg 1780 Pg 1781 Pg 1782 Pg 1783 Pg 1784 Pg 1785
Terms of Service
Privacy Policy
Contact: info@tinkutara.com