Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1781

Question Number 31026    Answers: 0   Comments: 2

Question Number 31023    Answers: 0   Comments: 0

Question Number 31018    Answers: 0   Comments: 1

Question Number 31016    Answers: 1   Comments: 0

show that 1/cosecx−cotx+1/cosecx+cotx=2cosecx

$${show}\:{that}\:\mathrm{1}/\mathrm{cosec}{x}−{cotx}+\mathrm{1}/\mathrm{cosec}{x}+\mathrm{cot}{x}=\mathrm{2cosec}{x} \\ $$

Question Number 31017    Answers: 1   Comments: 0

solve (√(1+tan^2 x/1+cot^2 x= tanx))

$${solve}\:\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} {x}/\mathrm{1}+{cot}^{\mathrm{2}} {x}=\:\:\:{tanx}} \\ $$

Question Number 31148    Answers: 1   Comments: 1

A body is projected at an angle 35° with an initial speed of 45m/s. What is the velocity of the body after 2s and the angle made with the horizontal axis? [g=9.81ms^(−2) ]

$${A}\:{body}\:{is}\:{projected}\:{at}\:{an}\:{angle} \\ $$$$\mathrm{35}°\:{with}\:{an}\:{initial}\:{speed}\:{of}\:\mathrm{45}{m}/{s}. \\ $$$${What}\:{is}\:{the}\:{velocity}\:{of}\:{the}\:{body} \\ $$$${after}\:\mathrm{2}{s}\:{and}\:{the}\:{angle}\:{made}\:{with} \\ $$$${the}\:{horizontal}\:{axis}?\:\left[{g}=\mathrm{9}.\mathrm{81}{ms}^{−\mathrm{2}} \right] \\ $$

Question Number 31147    Answers: 1   Comments: 0

if point of intersection of curves C_1 =λx^2 +4y^2 −2xy−9x+3 and C_2 =2x^2 +3y^2 −4xy+3x−1 subtends a right angle at origin the value of λ is?

$${if}\:{point}\:{of}\:{intersection}\:{of}\:{curves} \\ $$$${C}_{\mathrm{1}} =\lambda{x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} −\mathrm{2}{xy}−\mathrm{9}{x}+\mathrm{3}\:{and} \\ $$$${C}_{\mathrm{2}} =\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} −\mathrm{4}{xy}+\mathrm{3}{x}−\mathrm{1}\: \\ $$$${subtends}\:{a}\:{right}\:{angle}\:{at}\:{origin}\:{the} \\ $$$${value}\:{of}\:\lambda\:{is}? \\ $$

Question Number 31145    Answers: 1   Comments: 0

Given ∫_0 ^1 f(x) dx = (((2018)),(( 0)) ) + (1/2) (((2018)),(( 1)) ) + (1/3) (((2018)),(( 2)) ) + ... + (1/(2019)) (((2018)),((2018)) ) ∫_0 ^1 g(x) dx = (((2018)),(( 0)) ) − (1/2) (((2018)),(( 1)) ) + (1/3) (((2018)),(( 2)) ) − ... + (1/(2019)) (((2018)),((2018)) ) h(x) is an odd function Then what is the value of ∫_(−3) ^( 3) f(x).g(x).h(x) dx ?

$$\mathrm{Given} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right)\:{dx}\:=\:\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{0}}\end{pmatrix}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{1}}\end{pmatrix}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{2}}\end{pmatrix}\:+\:...\:+\:\frac{\mathrm{1}}{\mathrm{2019}}\begin{pmatrix}{\mathrm{2018}}\\{\mathrm{2018}}\end{pmatrix} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{g}\left({x}\right)\:{dx}\:=\:\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{0}}\end{pmatrix}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{1}}\end{pmatrix}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{2}}\end{pmatrix}\:−\:...\:+\:\frac{\mathrm{1}}{\mathrm{2019}}\begin{pmatrix}{\mathrm{2018}}\\{\mathrm{2018}}\end{pmatrix} \\ $$$${h}\left({x}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{odd}\:\mathrm{function} \\ $$$$\mathrm{Then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{−\mathrm{3}} ^{\:\mathrm{3}} \:{f}\left({x}\right).{g}\left({x}\right).{h}\left({x}\right)\:{dx}\:? \\ $$

Question Number 31144    Answers: 0   Comments: 2

A mass oscillating on a spring has amplitude of 1.2m and a period of 2.0s. (a)Deduce the equation for the displacement x if the timing starts at the instant where the mass has its maximum displacement. b)calculate the time interval c)the velocity at this position.

$${A}\:{mass}\:{oscillating}\:{on}\:{a}\:{spring} \\ $$$${has}\:{amplitude}\:{of}\:\mathrm{1}.\mathrm{2}{m}\:{and}\:{a} \\ $$$${period}\:{of}\:\mathrm{2}.\mathrm{0}{s}. \\ $$$$\left({a}\right){Deduce}\:{the}\:{equation}\:{for}\:{the} \\ $$$${displacement}\:{x}\:{if}\:{the}\:{timing}\:{starts} \\ $$$${at}\:{the}\:{instant}\:{where}\:{the}\:{mass} \\ $$$${has}\:{its}\:{maximum}\:{displacement}. \\ $$$$\left.{b}\right){calculate}\:{the}\:{time}\:{interval} \\ $$$$\left.{c}\right){the}\:{velocity}\:{at}\:{this}\:{position}. \\ $$

Question Number 31143    Answers: 1   Comments: 0

A cyclist is travelling down a hill at a speed of 9.2m/s . The hillside makes an angle of 6.3° with the horizontal .Calculate, for the cyclist: (i)the vertical speed (ii)horizontal speed

$${A}\:{cyclist}\:{is}\:{travelling}\:{down}\:{a} \\ $$$${hill}\:{at}\:{a}\:{speed}\:{of}\:\mathrm{9}.\mathrm{2}{m}/{s}\:.\:{The} \\ $$$${hillside}\:{makes}\:{an}\:{angle}\:{of}\:\mathrm{6}.\mathrm{3}° \\ $$$${with}\:{the}\:{horizontal}\:.{Calculate}, \\ $$$${for}\:{the}\:{cyclist}: \\ $$$$\left({i}\right){the}\:{vertical}\:{speed} \\ $$$$\left({ii}\right){horizontal}\:{speed} \\ $$

Question Number 31141    Answers: 1   Comments: 0

using the limit defination find the area of f(x)= cos(x) [0,π/2]

$$\boldsymbol{{using}}\:\boldsymbol{{the}}\:\boldsymbol{{limit}}\:\boldsymbol{{defination}} \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{area}}\:\boldsymbol{{of}} \\ $$$$\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\:\:\left[\mathrm{0},\pi/\mathrm{2}\right] \\ $$

Question Number 31004    Answers: 1   Comments: 0

Question Number 31003    Answers: 1   Comments: 0

Number of positive integers x for which f(x)=x^3 −8x^2 +20x−13 is a prime number are ?

$${Number}\:{of}\:{positive}\:{integers}\:{x}\:{for} \\ $$$${which}\:{f}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{8}{x}^{\mathrm{2}} +\mathrm{20}{x}−\mathrm{13}\:{is}\:\:{a}\: \\ $$$${prime}\:{number}\:{are}\:? \\ $$

Question Number 30994    Answers: 0   Comments: 3

Question Number 30990    Answers: 1   Comments: 0

Question Number 30984    Answers: 0   Comments: 3

Question Number 30986    Answers: 1   Comments: 0

Question Number 30961    Answers: 0   Comments: 13

Question Number 30958    Answers: 1   Comments: 4

Question Number 30957    Answers: 1   Comments: 0

Question Number 30956    Answers: 1   Comments: 0

Question Number 30939    Answers: 1   Comments: 0

If x^2 +y^2 +z^2 = r^2 , then tan^(−1) (((xy)/(zr)))+tan^(−1) (((yz)/(xr)))+tan^(−1) (((xz)/(yr))) =

$$\mathrm{If}\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\:{r}^{\mathrm{2}} \:,\:\mathrm{then} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\frac{{xy}}{{zr}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{yz}}{{xr}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{xz}}{{yr}}\right)\:= \\ $$

Question Number 30936    Answers: 0   Comments: 0

find ∫^a _0 ((sinx)/(√(1+x^2 )))dx .

$${find}\:\:\:\underset{\mathrm{0}} {\int}^{{a}} \:\:\frac{{sinx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}\:. \\ $$

Question Number 30933    Answers: 1   Comments: 0

Question Number 30929    Answers: 2   Comments: 1

Σ_(n=0) ^∞ tan^(−1) (n+(1/2))−tan^(−1) (n−(1/2))= ?

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\mathrm{tan}^{−\mathrm{1}} \left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{tan}^{−\mathrm{1}} \left({n}−\frac{\mathrm{1}}{\mathrm{2}}\right)=\:? \\ $$

Question Number 30918    Answers: 1   Comments: 0

  Pg 1776      Pg 1777      Pg 1778      Pg 1779      Pg 1780      Pg 1781      Pg 1782      Pg 1783      Pg 1784      Pg 1785   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com