Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1781

Question Number 30749    Answers: 0   Comments: 0

let f(x)=arcsinx with x∈[0,1] 1) prove that (1−x^2 )f^(′′) (x) −xf^′ (x)=0 2)prove that (1−x^2 )f^((n+2)) (x)=(2n+1)x f^((n+1)) (x) +n^2 f^((n)) (x) 3) prove that f^((n)) (x) ≥0 ∀n .

$${let}\:{f}\left({x}\right)={arcsinx}\:{with}\:{x}\in\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right){f}^{''} \left({x}\right)\:−{xf}^{'} \left({x}\right)=\mathrm{0} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right){f}^{\left({n}+\mathrm{2}\right)} \left({x}\right)=\left(\mathrm{2}{n}+\mathrm{1}\right){x}\:{f}^{\left({n}+\mathrm{1}\right)} \left({x}\right)\:+{n}^{\mathrm{2}} {f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\:{f}^{\left({n}\right)} \left({x}\right)\:\geqslant\mathrm{0}\:\forall{n}\:. \\ $$

Question Number 30748    Answers: 0   Comments: 0

let a>0 and b>0 find lim_(x→0^+ ) ( ((a^x +b^x )/2))^(1/x) .

$${let}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0}\:{find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\left(\:\:\frac{{a}^{{x}} \:+{b}^{{x}} }{\mathrm{2}}\right)^{\frac{\mathrm{1}}{{x}}} \:\:. \\ $$

Question Number 30747    Answers: 0   Comments: 0

let f(x)=(√(1+x^2 )) 1)find a d.e.wich verify f(x) 2) prove that ∀x∈R ,∀n∈N (1+x^2 )f^((n+2)) (x)+(2n+1)x f^((n+1)) (x) +(n^2 −1)f^((n)) (x)=0 3) prove that f^((2n+1)) (0)=0 ∀n∈ N

$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{d}.{e}.{wich}\:{verify}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\forall{x}\in{R}\:,\forall{n}\in{N} \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right){f}^{\left({n}+\mathrm{2}\right)} \left({x}\right)+\left(\mathrm{2}{n}+\mathrm{1}\right){x}\:{f}^{\left({n}+\mathrm{1}\right)} \left({x}\right)\:+\left({n}^{\mathrm{2}} −\mathrm{1}\right){f}^{\left({n}\right)} \left({x}\right)=\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\:{f}^{\left(\mathrm{2}{n}+\mathrm{1}\right)} \left(\mathrm{0}\right)=\mathrm{0}\:\forall{n}\in\:{N} \\ $$

Question Number 30745    Answers: 0   Comments: 0

let U_n ={z∈C/z^n =1} simlify A_n = Σ_(α∈U_n ) (x+α)^n and B_n =Σ_(α∈ U_n ) (x−α)^n .

$${let}\:\:{U}_{{n}} =\left\{{z}\in{C}/{z}^{{n}} =\mathrm{1}\right\}\:\:{simlify} \\ $$$${A}_{{n}} =\:\sum_{\alpha\in{U}_{{n}} } \:\left({x}+\alpha\right)^{{n}} \:{and}\:{B}_{{n}} =\sum_{\alpha\in\:{U}_{{n}} } \:\:\left({x}−\alpha\right)^{{n}} . \\ $$

Question Number 30744    Answers: 0   Comments: 0

let p(x)= (x−1)^n −x^n +1 with n integr find n in ordre that p(x) have a double root.

$${let}\:{p}\left({x}\right)=\:\left({x}−\mathrm{1}\right)^{{n}} \:−{x}^{{n}} \:+\mathrm{1}\:\:{with}\:{n}\:{integr}\:{find}\:{n} \\ $$$${in}\:{ordre}\:{that}\:{p}\left({x}\right)\:{have}\:{a}\:{double}\:{root}. \\ $$

Question Number 30743    Answers: 0   Comments: 1

decompose inside R[x] p(x)=x^(2n+1) −1 then find Π_(k=1) ^n sin( ((kπ)/(2n+1))) .

$${decompose}\:{inside}\:{R}\left[{x}\right]\:\:{p}\left({x}\right)={x}^{\mathrm{2}{n}+\mathrm{1}} \:−\mathrm{1}\:{then}\:{find} \\ $$$$\prod_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\:\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\:. \\ $$

Question Number 30742    Answers: 0   Comments: 0

prove that ∀p ∈N it exist one polynomial Q_(2p) / sin(2p+1)θ=sin^(2p+1) θ Q_(2p) (cotanθ) and degQ_(2p) =2p 2) prove that Π_(k=1) ^p tan(((kπ)/(2p+1)))=(√(2p+1)) .

$${prove}\:{that}\:\forall{p}\:\in{N}\:\:{it}\:{exist}\:{one}\:{polynomial}\:{Q}_{\mathrm{2}{p}} \:/ \\ $$$${sin}\left(\mathrm{2}{p}+\mathrm{1}\right)\theta={sin}^{\mathrm{2}{p}+\mathrm{1}} \theta\:{Q}_{\mathrm{2}{p}} \:\left({cotan}\theta\right)\:{and}\:{degQ}_{\mathrm{2}{p}} =\mathrm{2}{p} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\prod_{{k}=\mathrm{1}} ^{{p}} \:{tan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right)=\sqrt{\mathrm{2}{p}+\mathrm{1}}\:. \\ $$$$ \\ $$

Question Number 30741    Answers: 0   Comments: 0

let give D= R_+ ^2 −{(0,0)} and α from R let C_1 ={(x,y)∈ D/0<x^2 +y^2 ≤1 } C_2 ={(x,y) ∈D / x^2 +y^2 ≥1} study the convergence of I= ∫∫_C_1 ((dxdy)/(((√(x^2 +y^2 )) )^α )) and J=∫∫_C_2 ((dxdy)/(((√(x^2 +y^2 )) )^α )) .

$${let}\:{give}\:{D}=\:{R}_{+} ^{\mathrm{2}} \:−\left\{\left(\mathrm{0},\mathrm{0}\right)\right\}\:{and}\:\alpha\:{from}\:{R}\:{let} \\ $$$${C}_{\mathrm{1}} =\left\{\left({x},{y}\right)\in\:{D}/\mathrm{0}<{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{1}\:\right\} \\ $$$${C}_{\mathrm{2}} \:=\left\{\left({x},{y}\right)\:\in{D}\:/\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \geqslant\mathrm{1}\right\}\:{study}\:{the}\:{convergence}\:{of} \\ $$$${I}=\:\int\int_{{C}_{\mathrm{1}} } \:\:\:\frac{{dxdy}}{\left(\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:\right)^{\alpha} }\:\:{and}\:{J}=\int\int_{{C}_{\mathrm{2}} } \:\:\frac{{dxdy}}{\left(\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:}\:\right)^{\alpha} }\:. \\ $$

Question Number 30738    Answers: 1   Comments: 1

A boy can swim with a speed of 26m/s in still water.He wants to swim across a 150m river from a point A to point B which is directly opposite the other side of the river.The river flows with a speed of 10m/s. i)if he always swim in the direction parallel to AB,find how far he lands downstream of B. ii)In what direction relative to the bank must he swim so as to cross directly from A to B.

$${A}\:{boy}\:{can}\:{swim}\:{with}\:{a}\:{speed}\:{of} \\ $$$$\mathrm{26}{m}/{s}\:{in}\:{still}\:{water}.{He}\:{wants}\:{to} \\ $$$${swim}\:{across}\:{a}\:\mathrm{150}{m}\:{river}\:{from} \\ $$$${a}\:{point}\:{A}\:{to}\:{point}\:{B}\:{which}\:{is}\: \\ $$$${directly}\:{opposite}\:{the}\:{other}\:{side} \\ $$$${of}\:{the}\:{river}.{The}\:{river}\:{flows}\:{with} \\ $$$${a}\:{speed}\:{of}\:\mathrm{10}{m}/{s}. \\ $$$$\left.{i}\right){if}\:{he}\:{always}\:{swim}\:{in}\:{the}\: \\ $$$${direction}\:{parallel}\:{to}\:{AB},{find}\:{how} \\ $$$${far}\:{he}\:{lands}\:{downstream}\:{of}\:{B}. \\ $$$$\left.{ii}\right){In}\:{what}\:{direction}\:{relative}\:{to} \\ $$$${the}\:{bank}\:{must}\:{he}\:{swim}\:{so}\:{as}\:{to} \\ $$$${cross}\:{directly}\:{from}\:{A}\:{to}\:{B}. \\ $$

Question Number 30737    Answers: 0   Comments: 1

∫(1/(x^2 +ln x))dx

$$\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{ln}\:{x}}{dx} \\ $$

Question Number 30739    Answers: 0   Comments: 0

let (u_n ) / u_1 =1−i and ∀p∈{2,3,...n} u_p =u_(p−1) j with j=e^(i((2π)/3)) 1)verify that u_1 +u_2 +u_3 =0 2)prove that ∀p∈ {4,5,...,n} u_p =u_(p−3) 3)find the value of S_n =Σ_(i=1) ^n u_i 4)calculate α_n = Σ_(p=0) ^(n−1) cos(−(π/4) +((2pπ)/3)) and β_n = Σ_(p=0) ^(n−1) sin(−(π/4) +((2pπ)/3)).

$${let}\:\left({u}_{{n}} \right)\:/\:{u}_{\mathrm{1}} =\mathrm{1}−{i}\:{and}\:\:\forall{p}\in\left\{\mathrm{2},\mathrm{3},...{n}\right\}\:{u}_{{p}} ={u}_{{p}−\mathrm{1}} {j}\:{with} \\ $$$${j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$$\left.\mathrm{1}\right){verify}\:{that}\:{u}_{\mathrm{1}} \:+{u}_{\mathrm{2}} \:+{u}_{\mathrm{3}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\forall{p}\in\:\left\{\mathrm{4},\mathrm{5},...,{n}\right\}\:\:{u}_{{p}} ={u}_{{p}−\mathrm{3}} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:{S}_{{n}} \:=\sum_{{i}=\mathrm{1}} ^{{n}} \:{u}_{{i}} \\ $$$$\left.\mathrm{4}\right){calculate}\:\:\alpha_{{n}} =\:\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} {cos}\left(−\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{2}{p}\pi}{\mathrm{3}}\right)\:{and} \\ $$$$\beta_{{n}} =\:\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left(−\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{2}{p}\pi}{\mathrm{3}}\right). \\ $$

Question Number 30719    Answers: 1   Comments: 4

Question Number 30711    Answers: 1   Comments: 0

Question Number 33450    Answers: 1   Comments: 1

Question Number 30704    Answers: 0   Comments: 0

Question Number 30665    Answers: 0   Comments: 0

find ∫_0 ^π (dx/(1+cos(2x) +sin(2x))) .

$${find}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)\:+{sin}\left(\mathrm{2}{x}\right)}\:. \\ $$

Question Number 30657    Answers: 0   Comments: 2

lim_(x→∞) e^(−(x^2 /2))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \\ $$

Question Number 30646    Answers: 1   Comments: 2

Question Number 30631    Answers: 0   Comments: 0

Question Number 30628    Answers: 1   Comments: 0

Question Number 30627    Answers: 1   Comments: 0

Question Number 30687    Answers: 1   Comments: 0

Given that LCM(A,B,C)=252 LCM(A,B)=36 & LCM(A,C)=63; then: LCM(B,C)=? Pl determine all possible answers.

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{LCM}\left(\mathrm{A},\mathrm{B},\mathrm{C}\right)=\mathrm{252} \\ $$$$\mathrm{LCM}\left(\mathrm{A},\mathrm{B}\right)=\mathrm{36}\:\&\:\mathrm{LCM}\left(\mathrm{A},\mathrm{C}\right)=\mathrm{63}; \\ $$$$\mathrm{then}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{LCM}\left(\mathrm{B},\mathrm{C}\right)=? \\ $$$$\mathrm{Pl}\:\mathrm{determine}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{answers}. \\ $$

Question Number 30615    Answers: 1   Comments: 0

Question Number 30614    Answers: 1   Comments: 0

Consider that two cars are accelerating along the same road and if the distance between them was observed to be increasing,what deduction can you make as regards the acceleration? a)it implies that the trailing car has the smaller acceleration b)it implies that the two cars are accelerating at the same rate c)it implies nothing about the acceleration d)it implies that the leading car has the greater acceleration.

$${Consider}\:{that}\:{two}\:{cars}\:{are}\: \\ $$$${accelerating}\:{along}\:{the}\:{same}\:{road} \\ $$$${and}\:{if}\:{the}\:{distance}\:{between}\:{them} \\ $$$${was}\:{observed}\:{to}\:{be}\:{increasing},{what} \\ $$$${deduction}\:{can}\:{you}\:{make}\:{as}\:{regards} \\ $$$${the}\:{acceleration}? \\ $$$$\left.{a}\right){it}\:{implies}\:{that}\:{the}\:{trailing}\:{car} \\ $$$${has}\:{the}\:{smaller}\:{acceleration} \\ $$$$\left.{b}\right){it}\:{implies}\:{that}\:{the}\:{two}\:{cars}\:{are} \\ $$$${accelerating}\:{at}\:{the}\:{same}\:{rate} \\ $$$$\left.{c}\right){it}\:{implies}\:{nothing}\:{about}\:{the} \\ $$$${acceleration} \\ $$$$\left.{d}\right){it}\:{implies}\:{that}\:{the}\:{leading}\:{car}\: \\ $$$${has}\:{the}\:{greater}\:{acceleration}. \\ $$

Question Number 30613    Answers: 1   Comments: 1

A car negotiates a bend of radius 20m with an acceleration of 12m/s^2 .What is the maximum speed the car can attain without skidding?

$${A}\:{car}\:{negotiates}\:{a}\:{bend}\:{of}\:{radius} \\ $$$$\mathrm{20}{m}\:{with}\:{an}\:{acceleration}\:{of}\: \\ $$$$\mathrm{12}{m}/{s}^{\mathrm{2}} .{What}\:{is}\:{the}\:{maximum} \\ $$$${speed}\:{the}\:{car}\:{can}\:{attain}\:{without} \\ $$$${skidding}? \\ $$

Question Number 30612    Answers: 0   Comments: 0

A car negotiates a bend of radius 20m with an acceleration of 12m/s^2 .What is the maximum speed the car can attain without skidding?

$${A}\:{car}\:{negotiates}\:{a}\:{bend}\:{of}\:{radius} \\ $$$$\mathrm{20}{m}\:{with}\:{an}\:{acceleration}\:{of}\: \\ $$$$\mathrm{12}{m}/{s}^{\mathrm{2}} .{What}\:{is}\:{the}\:{maximum} \\ $$$${speed}\:{the}\:{car}\:{can}\:{attain}\:{without} \\ $$$${skidding}? \\ $$

  Pg 1776      Pg 1777      Pg 1778      Pg 1779      Pg 1780      Pg 1781      Pg 1782      Pg 1783      Pg 1784      Pg 1785   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com