Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1781
Question Number 31061 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({sin}\theta\:−{cos}\theta\right){ln}\left({sin}\theta+{cos}\theta\right){d}\theta. \\ $$
Question Number 31060 Answers: 0 Comments: 0
$${calculate}\:{by}\:{recurrence}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{lnx}}{\left(\mathrm{1}+{x}\right)^{{n}} }{dx}\:{with}\:{n}\geqslant\mathrm{2}\:. \\ $$
Question Number 31059 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}\theta\right){ln}\left({tan}\theta\right){d}\theta. \\ $$
Question Number 31058 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{arctanx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 31057 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} }\:{dx}.\: \\ $$
Question Number 31056 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\alpha\:+\mathrm{1}}\:\:{with}\:\mathrm{0}<\alpha<\pi\:. \\ $$
Question Number 31055 Answers: 0 Comments: 1
$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:−{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:−\mathrm{2}{x}+\mathrm{4}\right)}\:. \\ $$
Question Number 31054 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}\:. \\ $$
Question Number 31053 Answers: 0 Comments: 1
$${let}\:\lambda\:\in{R}\:{and}\:{a}>\mathrm{0}\:\:{find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ax}} {cos}\left(\lambda{x}\right){dx}\:. \\ $$
Question Number 31052 Answers: 0 Comments: 0
$${let}\:{give}\:\mathrm{0}<{a}<{b}\:\:{find}\:\int_{{a}} ^{{b}} \:\:\frac{{lnx}}{{x}}{dx}\:. \\ $$
Question Number 31051 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{ax}} \:−{e}^{−{bx}} }{\mathrm{1}−\:{e}^{−{x}} }\:{dx}. \\ $$
Question Number 31049 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{x}^{−{x}} {dx}\:. \\ $$
Question Number 31048 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\frac{\pi}{\mathrm{2}}\:−{arctanx}}{{x}}{dx} \\ $$
Question Number 31047 Answers: 0 Comments: 0
$${let}\:\Delta=\left\{\left({x},{y}\right)\in{N}^{\mathrm{2}} \:/{x}+{y}={n}\:,\:{n}\in{N}\right\}\:{find}\:{card}\Delta \\ $$$$\left.\mathrm{2}\right)\:{let}\:{A}=\:\left\{\left({x},{y}\right)\in{N}^{\mathrm{2}} /\:{x}+\mathrm{2}{y}={n}\right\}\:{find}\:{card}\:{A}. \\ $$
Question Number 31046 Answers: 0 Comments: 0
$${prove}\:{that}\:{C}_{{n}} ^{{o}} \:{C}_{{n}} ^{{p}} \:+{C}_{{n}} ^{\mathrm{1}} \:{C}_{{n}−\mathrm{1}} ^{{p}−\mathrm{1}} \:+...{C}_{{n}} ^{{p}} \:{C}_{{n}−{p}} ^{\mathrm{0}} =\mathrm{2}^{{p}} \:{C}_{{n}} ^{{p}} \:\:\:. \\ $$
Question Number 31045 Answers: 0 Comments: 0
$${simlify}\:{A}_{{n}} =\left({C}_{{n}} ^{\mathrm{1}} \right)^{\mathrm{2}} \:+\mathrm{2}\left({C}_{{n}} ^{\mathrm{2}} \right)^{\mathrm{2}} \:\:+{n}\:\left({C}_{{n}} ^{{n}} \right)^{\mathrm{2}} . \\ $$
Question Number 31044 Answers: 0 Comments: 0
$${if}\:\mathrm{1}\:+\mathrm{2}^{{n}} \:+\mathrm{3}^{{n}} \:+\mathrm{4}^{{n}} =\mathrm{4}{q}\:+{r}\:\:{find}\:{r}\: \\ $$
Question Number 31043 Answers: 0 Comments: 3
$${find}\:{n}\:{in}\:{ordre}\:{to}\:{have}\:\mathrm{7}\:{divide}\:{n}^{\mathrm{3}} \:+{n}−\mathrm{2} \\ $$
Question Number 31042 Answers: 0 Comments: 0
$${solve}\:{in}\:{N}^{\mathrm{2}} \:\:\mathrm{9}{y}^{\mathrm{2}} \:−\left({x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{32}\:. \\ $$
Question Number 31041 Answers: 0 Comments: 0
$${solve}\:{in}\:{Z}^{\mathrm{2}} \:\mathrm{11}{x}\:−\mathrm{5}{y}\:=\mathrm{14} \\ $$
Question Number 31040 Answers: 0 Comments: 0
$${solve}\:{in}\:{Z}^{\mathrm{2}} \:{x}^{\mathrm{2}} \:−{y}^{\mathrm{2}} =\mathrm{1969} \\ $$
Question Number 31039 Answers: 0 Comments: 0
$${find}\:{the}\:{sum} \\ $$$${s}_{\mathrm{0}} =\:{C}_{{n}} ^{{o}} \:+{C}_{{n}} ^{\mathrm{4}} \:+{C}_{{n}} ^{\mathrm{8}} \:+... \\ $$$${s}_{\mathrm{1}} =\:{C}_{{n}} ^{\mathrm{1}} \:+{C}_{{n}} ^{\mathrm{5}} \:+{C}_{{n}} ^{\mathrm{9}} \:+.... \\ $$$${s}_{\mathrm{3}} =\:{C}_{{n}} ^{\mathrm{2}} \:\:+{C}_{{n}} ^{\mathrm{6}} \:+\:{C}_{{n}} ^{\mathrm{10}} \:+.... \\ $$
Question Number 31038 Answers: 0 Comments: 0
$$\left.{let}\:{give}\:\alpha\:\in\right]−\pi\:,\pi\left[\right. \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\:{sin}^{\mathrm{2}} \alpha\:−\mathrm{2}\left(\mathrm{1}+{cos}\alpha\right)\:=−\mathrm{4}{cos}^{\mathrm{4}} \left(\frac{\alpha}{\mathrm{2}}\right) \\ $$$$\left.\mathrm{2}\right){solve}\:{inside}\:{C}\:\:{z}^{\mathrm{2}} \:−\mathrm{2}{z}\:{sin}\alpha\:+\mathrm{2}\left(\mathrm{1}+{cos}\alpha\right)=\mathrm{0}\:{find} \\ $$$${the}\:{module}\:{and}\:{arg}\:{of}\:{the}\:{roots}. \\ $$
Question Number 31037 Answers: 0 Comments: 0
$${let}\:\:\theta\in\left[\mathrm{0},\pi\right]\:\:{and}\:{Z}=\mathrm{1}+{cos}\theta\:+{isin}\theta \\ $$$${Z}^{'} ={cos}\theta\:+\left(\mathrm{1}+{sin}\theta\right){i}\:\:{find}\:\mid{ZZ}^{'} \mid\:\:{arg}\left({ZZ}^{'} \right) \\ $$$$\mid\frac{{Z}}{{Z}^{'} }\mid\:,\:{arg}\left(\frac{{Z}}{{Z}^{,} }\right)\:\:,\:\:\mid{Z}−{Z}^{,} \mid\:{and}\:{arg}\left({Z}−{Z}^{,} \right). \\ $$
Question Number 31036 Answers: 0 Comments: 0
$${solve}\:{inside}\:{C}\:\:{z}^{\mathrm{6}} =\:\left({z}^{−} \right)^{\mathrm{2}} \:\:. \\ $$
Question Number 31035 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{solve}\:{x}^{\mathrm{5}} =\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{if}\:{x}_{{i}} \:{are}\:{roots}\:{of}\:{this}\:{equation}\:{prove}\:{that}\:\sum_{{i}} \:{x}_{{i}} =\mathrm{0} \\ $$$$\left.\mathrm{3}\right){prove}\:{that}\:{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)\:+{cos}\left(\frac{\mathrm{4}\pi}{\mathrm{5}}\right)\:=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.\mathrm{4}\right){calculate}\:{cos}\left(\frac{\mathrm{4}\pi}{\mathrm{5}}\right)\:{interms}\:{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)\:{then}\:{find}\:{its} \\ $$$${values}. \\ $$
Pg 1776 Pg 1777 Pg 1778 Pg 1779 Pg 1780 Pg 1781 Pg 1782 Pg 1783 Pg 1784 Pg 1785
Terms of Service
Privacy Policy
Contact: info@tinkutara.com