Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1777
Question Number 30871 Answers: 1 Comments: 2
$${If}\:\:\:\mathrm{2}{f}\left({x}\right)+{f}\left(−{x}\right)=\frac{\mathrm{1}}{{x}}\mathrm{sin}\:\left({x}−\frac{\mathrm{1}}{{x}}\right) \\ $$$${Find}\:\:\:\int_{\mathrm{1}/{e}} ^{\:\:{e}} {f}\left({x}\right){dx}\:\:. \\ $$
Question Number 30866 Answers: 0 Comments: 8
Question Number 30858 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}\mid\mathrm{x}−\mathrm{4}\mid\mathrm{dx} \\ $$
Question Number 30862 Answers: 1 Comments: 0
Question Number 30861 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{wave}\:\mathrm{of}\:\mathrm{frequency}\:\mathrm{10hz}\:\mathrm{forms} \\ $$$$\mathrm{a}\:\mathrm{stationery}\:\mathrm{wave}\:\mathrm{pattern}\:\mathrm{in}\:\mathrm{a}\:\mathrm{medium} \\ $$$$\mathrm{where}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{is}\:\mathrm{20cms}^{−\mathrm{1}} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{adjacent}\:\mathrm{nodes}? \\ $$$$ \\ $$$$\mathrm{pls}\:\mathrm{help}.. \\ $$
Question Number 30860 Answers: 1 Comments: 0
$${S}=\:\mathrm{3}\left(\mathrm{1}!\right)−\mathrm{4}\left(\mathrm{2}!\right)+\mathrm{5}\left(\mathrm{3}!\right)−\mathrm{6}\left(\mathrm{4}!\right)+.... \\ $$$$\:\:\:\:.....−\left(\mathrm{2008}\right)\left(\mathrm{2006}!\right)+\mathrm{2007}! \\ $$$${Find}\:{value}\:{of}\:{S}. \\ $$
Question Number 30856 Answers: 1 Comments: 1
Question Number 30855 Answers: 1 Comments: 0
$$\int\frac{\mathrm{cosec}^{\mathrm{2}} \left(\mathrm{x}\right)}{\sqrt{\mathrm{cosecx}+\mathrm{cotx}}}\mathrm{dx} \\ $$
Question Number 30849 Answers: 0 Comments: 5
$${x}^{\mathrm{7}} +{x}^{\mathrm{6}} +{x}^{\mathrm{5}} +{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0} \\ $$$$\: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{7}} {\sum}}\left[\Re\left({x}_{{k}} \right)\right]^{\mathrm{2}} \:=\:? \\ $$$${x}_{{k}} \:=\:{k}^{\:\mathrm{th}} \:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\Re\left({x}_{{k}} \right)\:=\:\mathrm{real}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{root} \\ $$
Question Number 30840 Answers: 0 Comments: 1
Question Number 30836 Answers: 0 Comments: 1
Question Number 30827 Answers: 0 Comments: 0
Question Number 30823 Answers: 1 Comments: 0
Question Number 30820 Answers: 1 Comments: 0
Question Number 30813 Answers: 1 Comments: 0
Question Number 30808 Answers: 3 Comments: 0
Question Number 30803 Answers: 1 Comments: 0
$${oh}\:{how}\:{I}\:{wish}\:{this}\:{app}\:{has}\:{an} \\ $$$${AUDIO}\:{device}\:{system} \\ $$$${where}\:{we}\:{could}\:{explain} \\ $$$${all}\:{our}\:{doubts}\:{more} \\ $$$${accurately} \\ $$
Question Number 30798 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 30796 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)} \:{dx}. \\ $$
Question Number 30787 Answers: 0 Comments: 0
Question Number 30783 Answers: 1 Comments: 0
$${Prove}\:{that}\begin{vmatrix}{\mathrm{3}}&{{a}+{b}+{c}}&{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }\\{{a}+{b}+{c}}&{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }&{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }\\{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }&{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }&{{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} }\end{vmatrix} \\ $$$$=\left({a}−{b}\right)^{\mathrm{2}} \left({b}−{c}\right)^{\mathrm{2}} \left({c}−{a}\right)^{\mathrm{2}} \\ $$
Question Number 30780 Answers: 1 Comments: 0
Question Number 30777 Answers: 0 Comments: 0
$${find}\:{interms}\:{of}\:{n}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}^{} \right)^{{n}} }\:{dx}\:{with}\:{n}\:{from} \\ $$$${N}\:{and}\:{n}\geqslant\mathrm{3}\:. \\ $$
Question Number 30776 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{xdx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:. \\ $$
Question Number 30775 Answers: 1 Comments: 1
$$\left.{let}\alpha\:\in\right]\mathrm{0},\pi\left[\:\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{2}\left({cos}\alpha\:+{chx}\right)}\:.\right. \\ $$
Question Number 30774 Answers: 1 Comments: 1
$${find}\:{f}\left({t}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right){dx}\:\:{with}\:{t}>\mathrm{0} \\ $$
Pg 1772 Pg 1773 Pg 1774 Pg 1775 Pg 1776 Pg 1777 Pg 1778 Pg 1779 Pg 1780 Pg 1781
Terms of Service
Privacy Policy
Contact: info@tinkutara.com