Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1774
Question Number 31517 Answers: 0 Comments: 1
$${find}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}}\:+\sqrt{\mathrm{1}−{x}}}\:\:. \\ $$
Question Number 31516 Answers: 1 Comments: 1
$${find}\:\int\:\:\:\frac{{dx}}{{x}\:+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:. \\ $$
Question Number 31515 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{{chx}}\:. \\ $$
Question Number 31514 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{dx}. \\ $$
Question Number 31513 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{\mathrm{2}\:+{cosx}}\:\:. \\ $$
Question Number 31512 Answers: 0 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\infty} \:\int_{{x}} ^{\mathrm{2}{x}} \:\:\frac{{cos}\left(\frac{\mathrm{1}}{{t}}\right)}{{t}}\:{dt}. \\ $$
Question Number 31511 Answers: 0 Comments: 0
$${f}\:{is}\:{C}^{\mathrm{2}} \:{inside}\:{R}\:{and}\:{a}\in{R}\:{find} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\frac{\left.{fa}+{h}\right)−\mathrm{2}{f}\left({a}\right)\:+{f}\left({a}−{h}\right)}{{h}^{\mathrm{2}} } \\ $$
Question Number 31510 Answers: 0 Comments: 2
$$\left.{find}\:{lim}_{{n}\rightarrow\infty} \:\:\:^{{n}} \sqrt{\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right.}\right) \\ $$
Question Number 31509 Answers: 0 Comments: 1
$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{\sqrt{{n}^{\mathrm{2}} \:+\mathrm{2}{kn}}}\:\:{find}\:\:{lim}_{{n}\rightarrow\infty} \:{S}_{{n}} . \\ $$
Question Number 31508 Answers: 0 Comments: 0
$${let}\:{give}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\sqrt{{k}}\:\:{find}\:{a}\:{simple}\:{eqivalent}\:{of}\:{S}_{{n}} . \\ $$
Question Number 31507 Answers: 0 Comments: 0
$${g}\:{is}\:{real}\:{function}\:{continue}\:{let} \\ $$$${f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:{sin}\left({x}−{t}\right){g}\left({t}\right){dt} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:{f}^{'} \left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} {cos}\left({t}−{x}\right){g}\left({t}\right){dt} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{f}\:{is}\:{so}<{ution}\:{of}\:{the}\:{diff}.{equa}. \\ $$$${y}^{''} \:+{y}\:={g}\left({x}\right) \\ $$
Question Number 31506 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\int_{{x}} ^{\mathrm{2}{x}} \:\frac{{sht}}{{t}}{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{f}\left({x}\right)\:. \\ $$
Question Number 31505 Answers: 0 Comments: 0
$$\:{find}\:\:\:\:\int_{{a}} ^{{b}} \:\:\:\:\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}{dx}\:\:{with}\:{a}>\mathrm{1}\:{and}\:{b}>\mathrm{1}. \\ $$
Question Number 31504 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{{t}\:+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:. \\ $$
Question Number 31503 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{2}} ^{\sqrt{\mathrm{5}}} \:\:\:\:\:\frac{{dt}}{{t}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}\:. \\ $$
Question Number 31502 Answers: 0 Comments: 3
$${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right){dt}\:\:{with}\:{x}>\mathrm{0}. \\ $$$$\left.\mathrm{2}\right)\:{give}\:{thevalue}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dt}\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+\mathrm{2}{t}^{\mathrm{2}} \right){dt}. \\ $$
Question Number 31501 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}\:+\mathrm{2}{tanx}\right){dx}. \\ $$
Question Number 31500 Answers: 0 Comments: 3
$${let}\:{L}_{{n}} \left({x}\right)=\:{e}^{{x}} \:\left({e}^{−{x}} \:{x}^{{n}} \right)^{\left({n}\right)} \: \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{L}_{{n}} \:{is}\:{a}\:{polynomial} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{degL}_{{n}\:} {and}\:{the}\:{leading}\:{coefficient}\:. \\ $$
Question Number 31499 Answers: 0 Comments: 1
$${find}\:{the}\:{polynial}\:{p}\:{wich}\:{verify}\:{p}\left({x}\right)−{p}^{'} \left({x}\right)={x}^{{n}} \:{then} \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {p}\left({x}\right){dx}. \\ $$
Question Number 31498 Answers: 0 Comments: 0
$${find}\:{tbe}\:{value}\:{of}\:\prod_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\frac{{k}\pi}{{n}+\mathrm{1}}\right). \\ $$
Question Number 31496 Answers: 0 Comments: 1
$$\left.{let}\:{a}\in\right]\mathrm{0},\pi\left[\:\:\:{and}\:{A}\left({x}\right)=\:{x}^{\mathrm{2}{n}} \:−\mathrm{2}{cos}\left({na}\right){x}^{{n}} \:+\mathrm{1}\right. \\ $$$$\left.\mathrm{1}\right){factorize}\:{inside}\:{C}\left[{x}\right]\:{A}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{inside}\:{R}\left[{x}\right]\:{A}\left({x}\right). \\ $$
Question Number 31495 Answers: 0 Comments: 0
$${let}\:{give}\:{p}\left({x}\right)=\left({x}+{j}\right)^{{n}} \:−\left({x}−{j}\right)^{{n}} \:{with}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{inside}\:{C}\left[\:{x}\right]\:{p}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){factorize}\:{inside}\:{R}\left[{x}\right]\:{p}\left({x}\right). \\ $$
Question Number 31494 Answers: 0 Comments: 3
$${prove}\:{that}\:{x}^{\mathrm{2}} \:{divide}\:\left({x}+\mathrm{1}\right)^{\underset{} {{n}}} \:−{nx}−\mathrm{1}\:.{nintegr}. \\ $$
Question Number 31493 Answers: 0 Comments: 0
$${if}\:\left({xcos}\theta\:+{sint}\right)^{{n}} \:={Q}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\:+{R}\:\:{find}\:{tbe}\:{polynomialR} \\ $$
Question Number 31492 Answers: 0 Comments: 0
$${find}\:{all}\:{polynomial}\:{p}\left({x}\right)\:{wich}\:{verify}\: \\ $$$$\forall{k}\in{Z}\:\:\:\int_{{k}} ^{{k}+\mathrm{1}} {p}\left({x}\right){dx}={k}+\mathrm{1}. \\ $$
Question Number 31491 Answers: 0 Comments: 0
$${let}\:{p}\left({x}\right)=\:{x}^{{n}} \:+{a}_{{n}−\mathrm{1}} {x}^{{n}−\mathrm{1}} \:+....\:{a}_{\mathrm{1}} {x}\:+{a}_{{o}} \\ $$$${if}\:\:\xi\:\:{is}\:{roots}\:{of}\:{p}\left({x}\right)\:{prove}\:{that}\:\mid\xi\mid\:\leqslant\:\mathrm{1}+{max}_{\mathrm{0}\leqslant{i}\leqslant{n}−\mathrm{1}} \:\mid{a}_{{i}} \mid \\ $$
Pg 1769 Pg 1770 Pg 1771 Pg 1772 Pg 1773 Pg 1774 Pg 1775 Pg 1776 Pg 1777 Pg 1778
Terms of Service
Privacy Policy
Contact: info@tinkutara.com