Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1774

Question Number 31517    Answers: 0   Comments: 1

find ∫_(−1) ^1 (dx/((√(1+x)) +(√(1−x)))) .

$${find}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}}\:+\sqrt{\mathrm{1}−{x}}}\:\:. \\ $$

Question Number 31516    Answers: 1   Comments: 1

find ∫ (dx/(x +(√(1+x^2 )))) .

$${find}\:\int\:\:\:\frac{{dx}}{{x}\:+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:. \\ $$

Question Number 31515    Answers: 1   Comments: 1

calculate ∫_0 ^1 (dx/(chx)) .

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{{chx}}\:. \\ $$

Question Number 31514    Answers: 1   Comments: 0

find ∫_0 ^1 ((arctan(2x))/((1+x)^2 ))dx.

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{dx}. \\ $$

Question Number 31513    Answers: 1   Comments: 1

find ∫_0 ^(2π) (dx/(2 +cosx)) .

$${find}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{\mathrm{2}\:+{cosx}}\:\:. \\ $$

Question Number 31512    Answers: 0   Comments: 1

find lim_(x→∞) ∫_x ^(2x) ((cos((1/t)))/t) dt.

$${find}\:{lim}_{{x}\rightarrow\infty} \:\int_{{x}} ^{\mathrm{2}{x}} \:\:\frac{{cos}\left(\frac{\mathrm{1}}{{t}}\right)}{{t}}\:{dt}. \\ $$

Question Number 31511    Answers: 0   Comments: 0

f is C^2 inside R and a∈R find lim_(h→0) ((fa+h)−2f(a) +f(a−h))/h^2 )

$${f}\:{is}\:{C}^{\mathrm{2}} \:{inside}\:{R}\:{and}\:{a}\in{R}\:{find} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\frac{\left.{fa}+{h}\right)−\mathrm{2}{f}\left({a}\right)\:+{f}\left({a}−{h}\right)}{{h}^{\mathrm{2}} } \\ $$

Question Number 31510    Answers: 0   Comments: 2

find lim_(n→∞) ^n (√(Π_(k=1) ^n (1+(k/n^2 ))))

$$\left.{find}\:{lim}_{{n}\rightarrow\infty} \:\:\:^{{n}} \sqrt{\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right.}\right) \\ $$

Question Number 31509    Answers: 0   Comments: 1

let S_n =Σ_(k=1) ^n (1/(√(n^2 +2kn))) find lim_(n→∞) S_n .

$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{\sqrt{{n}^{\mathrm{2}} \:+\mathrm{2}{kn}}}\:\:{find}\:\:{lim}_{{n}\rightarrow\infty} \:{S}_{{n}} . \\ $$

Question Number 31508    Answers: 0   Comments: 0

let give S_n = Σ_(k=1) ^n (√k) find a simple eqivalent of S_n .

$${let}\:{give}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\sqrt{{k}}\:\:{find}\:{a}\:{simple}\:{eqivalent}\:{of}\:{S}_{{n}} . \\ $$

Question Number 31507    Answers: 0   Comments: 0

g is real function continue let f(x)=∫_0 ^x sin(x−t)g(t)dt 1)prove that f^′ (x)= ∫_0 ^x cos(t−x)g(t)dt 2)prove that f is so<ution of the diff.equa. y^(′′) +y =g(x)

$${g}\:{is}\:{real}\:{function}\:{continue}\:{let} \\ $$$${f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:{sin}\left({x}−{t}\right){g}\left({t}\right){dt} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:{f}^{'} \left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} {cos}\left({t}−{x}\right){g}\left({t}\right){dt} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{f}\:{is}\:{so}<{ution}\:{of}\:{the}\:{diff}.{equa}. \\ $$$${y}^{''} \:+{y}\:={g}\left({x}\right) \\ $$

Question Number 31506    Answers: 0   Comments: 1

let f(x)=∫_x ^(2x) ((sht)/t)dt 1) calculate f^′ (x) 2) find lim_(x→0) f(x) .

$${let}\:{f}\left({x}\right)=\int_{{x}} ^{\mathrm{2}{x}} \:\frac{{sht}}{{t}}{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{f}\left({x}\right)\:. \\ $$

Question Number 31505    Answers: 0   Comments: 0

find ∫_a ^b ((1−x^2 )/((1+x^2 )(√(1+x^4 ))))dx with a>1 and b>1.

$$\:{find}\:\:\:\:\int_{{a}} ^{{b}} \:\:\:\:\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}{dx}\:\:{with}\:{a}>\mathrm{1}\:{and}\:{b}>\mathrm{1}. \\ $$

Question Number 31504    Answers: 0   Comments: 1

calculate ∫_0 ^1 (dt/(t +(√(1−t^2 )))) .

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{{t}\:+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:. \\ $$

Question Number 31503    Answers: 0   Comments: 1

find ∫_2 ^(√5) (dt/(t(√(t^2 −1)))) .

$${find}\:\:\int_{\mathrm{2}} ^{\sqrt{\mathrm{5}}} \:\:\:\:\:\frac{{dt}}{{t}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}\:. \\ $$

Question Number 31502    Answers: 0   Comments: 3

find f(x)= ∫_0 ^1 ln(1+xt^2 )dt with x>0. 2) give thevalue of ∫_0 ^1 ln(1+t^2 )dt and ∫_0 ^1 ln(1+2t^2 )dt.

$${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right){dt}\:\:{with}\:{x}>\mathrm{0}. \\ $$$$\left.\mathrm{2}\right)\:{give}\:{thevalue}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dt}\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+\mathrm{2}{t}^{\mathrm{2}} \right){dt}. \\ $$

Question Number 31501    Answers: 0   Comments: 1

find ∫_0 ^(π/4) ln(1 +2tanx)dx.

$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}\:+\mathrm{2}{tanx}\right){dx}. \\ $$

Question Number 31500    Answers: 0   Comments: 3

let L_n (x)= e^x (e^(−x) x^n )^((n)) 1) prove that L_n is a polynomial 2) find degL_(n ) and the leading coefficient .

$${let}\:{L}_{{n}} \left({x}\right)=\:{e}^{{x}} \:\left({e}^{−{x}} \:{x}^{{n}} \right)^{\left({n}\right)} \: \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{L}_{{n}} \:{is}\:{a}\:{polynomial} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{degL}_{{n}\:} {and}\:{the}\:{leading}\:{coefficient}\:. \\ $$

Question Number 31499    Answers: 0   Comments: 1

find the polynial p wich verify p(x)−p^′ (x)=x^n then calculate ∫_0 ^1 p(x)dx.

$${find}\:{the}\:{polynial}\:{p}\:{wich}\:{verify}\:{p}\left({x}\right)−{p}^{'} \left({x}\right)={x}^{{n}} \:{then} \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {p}\left({x}\right){dx}. \\ $$

Question Number 31498    Answers: 0   Comments: 0

find tbe value of Π_(k=1) ^n sin(((kπ)/(n+1))).

$${find}\:{tbe}\:{value}\:{of}\:\prod_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\frac{{k}\pi}{{n}+\mathrm{1}}\right). \\ $$

Question Number 31496    Answers: 0   Comments: 1

let a∈]0,π[ and A(x)= x^(2n) −2cos(na)x^n +1 1)factorize inside C[x] A(x) 2) factorize inside R[x] A(x).

$$\left.{let}\:{a}\in\right]\mathrm{0},\pi\left[\:\:\:{and}\:{A}\left({x}\right)=\:{x}^{\mathrm{2}{n}} \:−\mathrm{2}{cos}\left({na}\right){x}^{{n}} \:+\mathrm{1}\right. \\ $$$$\left.\mathrm{1}\right){factorize}\:{inside}\:{C}\left[{x}\right]\:{A}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{inside}\:{R}\left[{x}\right]\:{A}\left({x}\right). \\ $$

Question Number 31495    Answers: 0   Comments: 0

let give p(x)=(x+j)^n −(x−j)^n with j=e^(i((2π)/3)) 1) find roots of p(x) 2) factorize inside C[ x] p(x) 3)factorize inside R[x] p(x).

$${let}\:{give}\:{p}\left({x}\right)=\left({x}+{j}\right)^{{n}} \:−\left({x}−{j}\right)^{{n}} \:{with}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{inside}\:{C}\left[\:{x}\right]\:{p}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){factorize}\:{inside}\:{R}\left[{x}\right]\:{p}\left({x}\right). \\ $$

Question Number 31494    Answers: 0   Comments: 3

prove that x^2 divide (x+1)^n_ −nx−1 .nintegr.

$${prove}\:{that}\:{x}^{\mathrm{2}} \:{divide}\:\left({x}+\mathrm{1}\right)^{\underset{} {{n}}} \:−{nx}−\mathrm{1}\:.{nintegr}. \\ $$

Question Number 31493    Answers: 0   Comments: 0

if (xcosθ +sint)^n =Q(x^2 +1) +R find tbe polynomialR

$${if}\:\left({xcos}\theta\:+{sint}\right)^{{n}} \:={Q}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\:+{R}\:\:{find}\:{tbe}\:{polynomialR} \\ $$

Question Number 31492    Answers: 0   Comments: 0

find all polynomial p(x) wich verify ∀k∈Z ∫_k ^(k+1) p(x)dx=k+1.

$${find}\:{all}\:{polynomial}\:{p}\left({x}\right)\:{wich}\:{verify}\: \\ $$$$\forall{k}\in{Z}\:\:\:\int_{{k}} ^{{k}+\mathrm{1}} {p}\left({x}\right){dx}={k}+\mathrm{1}. \\ $$

Question Number 31491    Answers: 0   Comments: 0

let p(x)= x^n +a_(n−1) x^(n−1) +.... a_1 x +a_o if ξ is roots of p(x) prove that ∣ξ∣ ≤ 1+max_(0≤i≤n−1) ∣a_i ∣

$${let}\:{p}\left({x}\right)=\:{x}^{{n}} \:+{a}_{{n}−\mathrm{1}} {x}^{{n}−\mathrm{1}} \:+....\:{a}_{\mathrm{1}} {x}\:+{a}_{{o}} \\ $$$${if}\:\:\xi\:\:{is}\:{roots}\:{of}\:{p}\left({x}\right)\:{prove}\:{that}\:\mid\xi\mid\:\leqslant\:\mathrm{1}+{max}_{\mathrm{0}\leqslant{i}\leqslant{n}−\mathrm{1}} \:\mid{a}_{{i}} \mid \\ $$

  Pg 1769      Pg 1770      Pg 1771      Pg 1772      Pg 1773      Pg 1774      Pg 1775      Pg 1776      Pg 1777      Pg 1778   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com