Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1774

Question Number 30764    Answers: 0   Comments: 1

let I_n = ∫_0 ^(1/2) (1−2t)^n e^(−t) dt with n integr not 0 1) prove that ∀t∈[0,(1/2)] (1/(√e))(1−2t)^n ≤ (1−2t)^n e^(−t) ≤(1−2t)^n then find lim_(n→∞ ) I_n 2) prove that I_(n+1 ) =1−2(n+1)I_n 3) calculate I_1 ,I_2 , and I_3 .

$${let}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{e}^{−{t}} {dt}\:\:{with}\:{n}\:{integr}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall{t}\in\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$$\frac{\mathrm{1}}{\sqrt{{e}}}\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \leqslant\:\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{e}^{−{t}} \:\leqslant\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{then}\:{find}\:{lim}_{{n}\rightarrow\infty\:} {I}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{I}_{{n}+\mathrm{1}\:} =\mathrm{1}−\mathrm{2}\left({n}+\mathrm{1}\right){I}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{I}_{\mathrm{1}} ,{I}_{\mathrm{2}} ,\:{and}\:{I}_{\mathrm{3}} . \\ $$

Question Number 30761    Answers: 0   Comments: 1

find ∫_0 ^∞ x^(2n+1) e^(−x^2 ) dx with n from N.

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:{x}^{\mathrm{2}{n}+\mathrm{1}} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:\:\:{with}\:{n}\:{from}\:{N}. \\ $$

Question Number 30760    Answers: 0   Comments: 1

find I_n = ∫_0 ^1 (lnx)^n dx with n fromN

$${find}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({lnx}\right)^{{n}} \:{dx}\:\:{with}\:{n}\:{fromN} \\ $$

Question Number 30759    Answers: 0   Comments: 1

find lim_(n→∞) (((n!)/n^n ))^(1/n) .

$${find}\:{lim}_{{n}\rightarrow\infty} \:\:\:\:\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} \:. \\ $$

Question Number 30758    Answers: 0   Comments: 1

find lim_(n→∞) ((1/(n+1)) +(1/(n+2)) +....+(1/(n+p))) pfixed fromN^★

$${find}\:{lim}_{{n}\rightarrow\infty} \left(\frac{\mathrm{1}}{{n}+\mathrm{1}}\:+\frac{\mathrm{1}}{{n}+\mathrm{2}}\:+....+\frac{\mathrm{1}}{{n}+{p}}\right)\:{pfixed}\:{fromN}^{\bigstar} \\ $$$$ \\ $$

Question Number 30757    Answers: 0   Comments: 1

find lim_(n→∞) ((1/n) +(1/(√(n^2 −1))) +.... +(1/(√(n^2 −(n−1)^2 ))) )

$${find}\:{lim}_{{n}\rightarrow\infty} \:\:\left(\frac{\mathrm{1}}{{n}}\:+\frac{\mathrm{1}}{\sqrt{{n}^{\mathrm{2}} \:−\mathrm{1}}}\:+....\:+\frac{\mathrm{1}}{\sqrt{{n}^{\mathrm{2}} \:−\left({n}−\mathrm{1}\right)^{\mathrm{2}} }}\:\right) \\ $$

Question Number 30755    Answers: 0   Comments: 1

find lim_(n→∞) ^n (√((1+(1/n))(1+(2/n))...(1+(n/n)) ))

$${find}\:\:\:{lim}_{{n}\rightarrow\infty} \:\:^{{n}} \sqrt{\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\left(\mathrm{1}+\frac{\mathrm{2}}{{n}}\right)...\left(\mathrm{1}+\frac{{n}}{{n}}\right)\:} \\ $$

Question Number 30754    Answers: 0   Comments: 0

prove that e^x =Σ_(k=0) ^n (x^k /(k!)) +(x^(n+1) /(n!)) ∫_0 ^ (1−t)^n e^(tx) dt 2) prove that e^x = Σ_(k=0) ^(∞ ) (x^k /(k!)) .

$${prove}\:{that}\:{e}^{{x}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{x}^{{k}} }{{k}!}\:+\frac{{x}^{{n}+\mathrm{1}} }{{n}!}\:\int_{\mathrm{0}} ^{} \left(\mathrm{1}−{t}\right)^{{n}} \:{e}^{{tx}} {dt} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:{e}^{{x}} =\:\sum_{{k}=\mathrm{0}} ^{\infty\:} \:\:\frac{{x}^{{k}} }{{k}!}\:. \\ $$

Question Number 30753    Answers: 0   Comments: 0

let f_n (x)=(1/x^(n+1) ) (e^x −Σ_(p=0) ^(n ) (x^p /(p!))) 1) prove that f^((n)) (x)=((Q_n (x) e^x −P_n (x))/x^(2n+1) ) find the polynomial P_n and Q_n . 2) prove that e^x −((P_n (x))/(Q_n (x)))=o(x^(2n+1) )

$${let}\:{f}_{{n}} \left({x}\right)=\frac{\mathrm{1}}{{x}^{{n}+\mathrm{1}} }\:\left({e}^{{x}} \:\:−\sum_{{p}=\mathrm{0}} ^{{n}\:} \:\:\:\frac{{x}^{{p}} }{{p}!}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}^{\left({n}\right)} \left({x}\right)=\frac{{Q}_{{n}} \left({x}\right)\:{e}^{{x}} \:−{P}_{{n}} \left({x}\right)}{{x}^{\mathrm{2}{n}+\mathrm{1}} }\:{find}\:{the} \\ $$$${polynomial}\:{P}_{{n}} \:{and}\:{Q}_{{n}} . \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{e}^{{x}} \:−\frac{{P}_{{n}} \left({x}\right)}{{Q}_{{n}} \left({x}\right)}={o}\left({x}^{\mathrm{2}{n}+\mathrm{1}} \:\:\right) \\ $$

Question Number 30752    Answers: 0   Comments: 1

let f(x)= (1/(1+x^2 )) calculate f^((n)) (x).

$${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right). \\ $$

Question Number 30751    Answers: 0   Comments: 0

study and give the graph for f(x)=(x^2 /(x−1)) e^(1/x) .

$${study}\:{and}\:{give}\:{the}\:{graph}\:{for}\: \\ $$$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}−\mathrm{1}}\:{e}^{\frac{\mathrm{1}}{{x}}} \:\:. \\ $$

Question Number 30750    Answers: 0   Comments: 0

f function C^∞ /f^′ =1+f^2 let take a_k =((f^((k)) (0))/(k!)) prove that a_(n+1) = (1/(n+1)) Σ_(k=0) ^n a_k a_(n−k)

$${f}\:{function}\:{C}^{\infty} \:/{f}^{'} =\mathrm{1}+{f}^{\mathrm{2}} \:\:{let}\:{take}\:{a}_{{k}} =\frac{{f}^{\left({k}\right)} \left(\mathrm{0}\right)}{{k}!}\: \\ $$$${prove}\:{that}\:{a}_{{n}+\mathrm{1}} =\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{a}_{{k}} \:\:{a}_{{n}−{k}} \\ $$

Question Number 30749    Answers: 0   Comments: 0

let f(x)=arcsinx with x∈[0,1] 1) prove that (1−x^2 )f^(′′) (x) −xf^′ (x)=0 2)prove that (1−x^2 )f^((n+2)) (x)=(2n+1)x f^((n+1)) (x) +n^2 f^((n)) (x) 3) prove that f^((n)) (x) ≥0 ∀n .

$${let}\:{f}\left({x}\right)={arcsinx}\:{with}\:{x}\in\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right){f}^{''} \left({x}\right)\:−{xf}^{'} \left({x}\right)=\mathrm{0} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right){f}^{\left({n}+\mathrm{2}\right)} \left({x}\right)=\left(\mathrm{2}{n}+\mathrm{1}\right){x}\:{f}^{\left({n}+\mathrm{1}\right)} \left({x}\right)\:+{n}^{\mathrm{2}} {f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\:{f}^{\left({n}\right)} \left({x}\right)\:\geqslant\mathrm{0}\:\forall{n}\:. \\ $$

Question Number 30748    Answers: 0   Comments: 0

let a>0 and b>0 find lim_(x→0^+ ) ( ((a^x +b^x )/2))^(1/x) .

$${let}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0}\:{find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\left(\:\:\frac{{a}^{{x}} \:+{b}^{{x}} }{\mathrm{2}}\right)^{\frac{\mathrm{1}}{{x}}} \:\:. \\ $$

Question Number 30747    Answers: 0   Comments: 0

let f(x)=(√(1+x^2 )) 1)find a d.e.wich verify f(x) 2) prove that ∀x∈R ,∀n∈N (1+x^2 )f^((n+2)) (x)+(2n+1)x f^((n+1)) (x) +(n^2 −1)f^((n)) (x)=0 3) prove that f^((2n+1)) (0)=0 ∀n∈ N

$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{d}.{e}.{wich}\:{verify}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\forall{x}\in{R}\:,\forall{n}\in{N} \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right){f}^{\left({n}+\mathrm{2}\right)} \left({x}\right)+\left(\mathrm{2}{n}+\mathrm{1}\right){x}\:{f}^{\left({n}+\mathrm{1}\right)} \left({x}\right)\:+\left({n}^{\mathrm{2}} −\mathrm{1}\right){f}^{\left({n}\right)} \left({x}\right)=\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\:{f}^{\left(\mathrm{2}{n}+\mathrm{1}\right)} \left(\mathrm{0}\right)=\mathrm{0}\:\forall{n}\in\:{N} \\ $$

Question Number 30745    Answers: 0   Comments: 0

let U_n ={z∈C/z^n =1} simlify A_n = Σ_(α∈U_n ) (x+α)^n and B_n =Σ_(α∈ U_n ) (x−α)^n .

$${let}\:\:{U}_{{n}} =\left\{{z}\in{C}/{z}^{{n}} =\mathrm{1}\right\}\:\:{simlify} \\ $$$${A}_{{n}} =\:\sum_{\alpha\in{U}_{{n}} } \:\left({x}+\alpha\right)^{{n}} \:{and}\:{B}_{{n}} =\sum_{\alpha\in\:{U}_{{n}} } \:\:\left({x}−\alpha\right)^{{n}} . \\ $$

Question Number 30744    Answers: 0   Comments: 0

let p(x)= (x−1)^n −x^n +1 with n integr find n in ordre that p(x) have a double root.

$${let}\:{p}\left({x}\right)=\:\left({x}−\mathrm{1}\right)^{{n}} \:−{x}^{{n}} \:+\mathrm{1}\:\:{with}\:{n}\:{integr}\:{find}\:{n} \\ $$$${in}\:{ordre}\:{that}\:{p}\left({x}\right)\:{have}\:{a}\:{double}\:{root}. \\ $$

Question Number 30743    Answers: 0   Comments: 1

decompose inside R[x] p(x)=x^(2n+1) −1 then find Π_(k=1) ^n sin( ((kπ)/(2n+1))) .

$${decompose}\:{inside}\:{R}\left[{x}\right]\:\:{p}\left({x}\right)={x}^{\mathrm{2}{n}+\mathrm{1}} \:−\mathrm{1}\:{then}\:{find} \\ $$$$\prod_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\:\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\:. \\ $$

Question Number 30742    Answers: 0   Comments: 0

prove that ∀p ∈N it exist one polynomial Q_(2p) / sin(2p+1)θ=sin^(2p+1) θ Q_(2p) (cotanθ) and degQ_(2p) =2p 2) prove that Π_(k=1) ^p tan(((kπ)/(2p+1)))=(√(2p+1)) .

$${prove}\:{that}\:\forall{p}\:\in{N}\:\:{it}\:{exist}\:{one}\:{polynomial}\:{Q}_{\mathrm{2}{p}} \:/ \\ $$$${sin}\left(\mathrm{2}{p}+\mathrm{1}\right)\theta={sin}^{\mathrm{2}{p}+\mathrm{1}} \theta\:{Q}_{\mathrm{2}{p}} \:\left({cotan}\theta\right)\:{and}\:{degQ}_{\mathrm{2}{p}} =\mathrm{2}{p} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\prod_{{k}=\mathrm{1}} ^{{p}} \:{tan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right)=\sqrt{\mathrm{2}{p}+\mathrm{1}}\:. \\ $$$$ \\ $$

Question Number 30741    Answers: 0   Comments: 0

let give D= R_+ ^2 −{(0,0)} and α from R let C_1 ={(x,y)∈ D/0<x^2 +y^2 ≤1 } C_2 ={(x,y) ∈D / x^2 +y^2 ≥1} study the convergence of I= ∫∫_C_1 ((dxdy)/(((√(x^2 +y^2 )) )^α )) and J=∫∫_C_2 ((dxdy)/(((√(x^2 +y^2 )) )^α )) .

$${let}\:{give}\:{D}=\:{R}_{+} ^{\mathrm{2}} \:−\left\{\left(\mathrm{0},\mathrm{0}\right)\right\}\:{and}\:\alpha\:{from}\:{R}\:{let} \\ $$$${C}_{\mathrm{1}} =\left\{\left({x},{y}\right)\in\:{D}/\mathrm{0}<{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{1}\:\right\} \\ $$$${C}_{\mathrm{2}} \:=\left\{\left({x},{y}\right)\:\in{D}\:/\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \geqslant\mathrm{1}\right\}\:{study}\:{the}\:{convergence}\:{of} \\ $$$${I}=\:\int\int_{{C}_{\mathrm{1}} } \:\:\:\frac{{dxdy}}{\left(\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:\right)^{\alpha} }\:\:{and}\:{J}=\int\int_{{C}_{\mathrm{2}} } \:\:\frac{{dxdy}}{\left(\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:}\:\right)^{\alpha} }\:. \\ $$

Question Number 30738    Answers: 1   Comments: 1

A boy can swim with a speed of 26m/s in still water.He wants to swim across a 150m river from a point A to point B which is directly opposite the other side of the river.The river flows with a speed of 10m/s. i)if he always swim in the direction parallel to AB,find how far he lands downstream of B. ii)In what direction relative to the bank must he swim so as to cross directly from A to B.

$${A}\:{boy}\:{can}\:{swim}\:{with}\:{a}\:{speed}\:{of} \\ $$$$\mathrm{26}{m}/{s}\:{in}\:{still}\:{water}.{He}\:{wants}\:{to} \\ $$$${swim}\:{across}\:{a}\:\mathrm{150}{m}\:{river}\:{from} \\ $$$${a}\:{point}\:{A}\:{to}\:{point}\:{B}\:{which}\:{is}\: \\ $$$${directly}\:{opposite}\:{the}\:{other}\:{side} \\ $$$${of}\:{the}\:{river}.{The}\:{river}\:{flows}\:{with} \\ $$$${a}\:{speed}\:{of}\:\mathrm{10}{m}/{s}. \\ $$$$\left.{i}\right){if}\:{he}\:{always}\:{swim}\:{in}\:{the}\: \\ $$$${direction}\:{parallel}\:{to}\:{AB},{find}\:{how} \\ $$$${far}\:{he}\:{lands}\:{downstream}\:{of}\:{B}. \\ $$$$\left.{ii}\right){In}\:{what}\:{direction}\:{relative}\:{to} \\ $$$${the}\:{bank}\:{must}\:{he}\:{swim}\:{so}\:{as}\:{to} \\ $$$${cross}\:{directly}\:{from}\:{A}\:{to}\:{B}. \\ $$

Question Number 30737    Answers: 0   Comments: 1

∫(1/(x^2 +ln x))dx

$$\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{ln}\:{x}}{dx} \\ $$

Question Number 30739    Answers: 0   Comments: 0

let (u_n ) / u_1 =1−i and ∀p∈{2,3,...n} u_p =u_(p−1) j with j=e^(i((2π)/3)) 1)verify that u_1 +u_2 +u_3 =0 2)prove that ∀p∈ {4,5,...,n} u_p =u_(p−3) 3)find the value of S_n =Σ_(i=1) ^n u_i 4)calculate α_n = Σ_(p=0) ^(n−1) cos(−(π/4) +((2pπ)/3)) and β_n = Σ_(p=0) ^(n−1) sin(−(π/4) +((2pπ)/3)).

$${let}\:\left({u}_{{n}} \right)\:/\:{u}_{\mathrm{1}} =\mathrm{1}−{i}\:{and}\:\:\forall{p}\in\left\{\mathrm{2},\mathrm{3},...{n}\right\}\:{u}_{{p}} ={u}_{{p}−\mathrm{1}} {j}\:{with} \\ $$$${j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$$\left.\mathrm{1}\right){verify}\:{that}\:{u}_{\mathrm{1}} \:+{u}_{\mathrm{2}} \:+{u}_{\mathrm{3}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\forall{p}\in\:\left\{\mathrm{4},\mathrm{5},...,{n}\right\}\:\:{u}_{{p}} ={u}_{{p}−\mathrm{3}} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:{S}_{{n}} \:=\sum_{{i}=\mathrm{1}} ^{{n}} \:{u}_{{i}} \\ $$$$\left.\mathrm{4}\right){calculate}\:\:\alpha_{{n}} =\:\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} {cos}\left(−\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{2}{p}\pi}{\mathrm{3}}\right)\:{and} \\ $$$$\beta_{{n}} =\:\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left(−\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{2}{p}\pi}{\mathrm{3}}\right). \\ $$

Question Number 30719    Answers: 1   Comments: 4

Question Number 30711    Answers: 1   Comments: 0

Question Number 33450    Answers: 1   Comments: 1

  Pg 1769      Pg 1770      Pg 1771      Pg 1772      Pg 1773      Pg 1774      Pg 1775      Pg 1776      Pg 1777      Pg 1778   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com