Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 177
Question Number 204168 Answers: 1 Comments: 1
Question Number 204158 Answers: 2 Comments: 2
Question Number 204157 Answers: 0 Comments: 2
$${hello}\:{frinds} \\ $$$${I}\:{have}\:{a}\:{question} \\ $$$${when}\:{the}\:{most}\:{accurate}\:{math}\:{sofward} \\ $$$${it}\:{solves}\:{the}\:{most}\:{complex}\:{math} \\ $$$${problems}\:.{what}\:{is}\:{the}\:{need}\:{for}\:{us} \\ $$$${to}\:{spend}\:{hours}\:{to}\:{solve}\:{that}? \\ $$$$\left({Ofcourse}\:{i}\:{myself}\:{love}\:{math}\right) \\ $$$$\left({sorry}\:{i}'{m}\:{bad}\:{in}\:{english}\right) \\ $$
Question Number 204152 Answers: 2 Comments: 0
$$\:\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\mathrm{xy}−\mathrm{x}^{\mathrm{3}} \mathrm{y}^{\mathrm{2}} \\ $$$$\:\mathrm{attained}\:\mathrm{over}\:\mathrm{the}\:\mathrm{square}\:\mathrm{0}\leqslant\mathrm{x}\leqslant\mathrm{1};\mathrm{0}\leqslant\mathrm{y}\leqslant\mathrm{1}\:\mathrm{is} \\ $$
Question Number 204145 Answers: 1 Comments: 0
Question Number 204142 Answers: 1 Comments: 0
$$\mathrm{Solve}:\:\:\mathrm{x}^{\mathrm{x}} \:\:=\:\:\mathrm{27}^{\mathrm{x}\:\:−\:\:\mathrm{3}} \\ $$
Question Number 204141 Answers: 1 Comments: 0
Question Number 204129 Answers: 2 Comments: 0
$$\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{x}\:,\:\mathrm{y}\:\in\:\mathbb{R} \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:=\:\mathrm{23} \\ $$$$\mathrm{ax}\:+\:\mathrm{by}\:=\:\mathrm{79} \\ $$$$\mathrm{ax}^{\mathrm{2}} \:+\:\mathrm{by}^{\mathrm{2}} \:=\:\mathrm{217} \\ $$$$\mathrm{ax}^{\mathrm{3}} \:+\:\mathrm{by}^{\mathrm{3}} \:=\:\mathrm{661} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{by}^{\mathrm{4}} \:=\:? \\ $$
Question Number 204123 Answers: 2 Comments: 1
Question Number 204117 Answers: 0 Comments: 4
$${solve}\:{for}\:\theta\:{in}\:{terms}\:{of}\:{y}\:{when}\:{y}\:=\:{e}^{\theta} \left({cos}\theta+{sin}\theta\right)\:\:\: \\ $$
Question Number 204174 Answers: 1 Comments: 0
Question Number 204105 Answers: 3 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:\left(\mathrm{1}\:+\:\mathrm{cos}{x}\right)\:\mathrm{sin}{x} \\ $$$$\mathrm{without}\:\mathrm{derivative}. \\ $$
Question Number 204104 Answers: 0 Comments: 0
Question Number 204102 Answers: 0 Comments: 0
Question Number 204101 Answers: 0 Comments: 0
$${Find}\:{the}\:{possible}\:{values}\:{for}\:{x}\:{and}\:{y}\:{if} \\ $$$$\mathrm{10}{cosx}\:+\:\mathrm{12}{cos}\left({x}+{y}\right)=\mathrm{5} \\ $$$$\mathrm{10}{sinx}\:+\:\mathrm{12}{sin}\left({x}+{y}\right)=\mathrm{20}.\mathrm{66} \\ $$
Question Number 204083 Answers: 2 Comments: 0
Given that tan(A + B) = 1 and tan(A - B) = 1/7 find tan A and tan B
Question Number 204082 Answers: 1 Comments: 3
$$\sqrt{\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{66}^{\mathrm{2}} }+{x}}{{x}}}−\sqrt{{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{66}^{\mathrm{2}} }−{x}^{\mathrm{2}} }=\mathrm{5} \\ $$
Question Number 204081 Answers: 1 Comments: 0
$${what}\:{is}\:{the}\:{area}\:{of}\:{the}\:{largest}\:{square} \\ $$$${that}\:{can}\:{be}\:{enclosed}\:{in}\:{a}\:{triangle} \\ $$$${with}\:{an}\:{area}\:{of}\:\mathrm{1}? \\ $$
Question Number 204078 Answers: 0 Comments: 1
Question Number 204072 Answers: 1 Comments: 0
$$\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{2}}=\mathrm{sin}\:\mathrm{2}\theta?\:\left(\mathrm{90}°>\theta>\mathrm{0}°\right) \\ $$
Question Number 204062 Answers: 4 Comments: 0
$$\mathrm{I}.\:\:\:\:\:\:\:\mathrm{A}\left(−\mathrm{5},\:−\mathrm{1}\right);\:\mathrm{B}\left(\mathrm{3},\:−\mathrm{5}\right);\:\mathrm{C}\left(\mathrm{5},\:\mathrm{2}\right)\:\:\:\:\:\:{ar}\left(\bigtriangleup\mathrm{ABC}\right)\:=\:? \\ $$$$\mathrm{II}.\:\:\:\:\:\mathrm{A}\left(\mathrm{5},\:\mathrm{3}\right);\:\mathrm{B}\left(\mathrm{2},\:\mathrm{5}\right);\:\mathrm{C}\left(−\mathrm{5},\:\mathrm{3}\right);\:\mathrm{D}\left(−\mathrm{4},\:−\mathrm{3}\right)\:\:\:\:\:\:\:{ar}\left(\Box\mathrm{ABCD}\right)\:=\:? \\ $$$$\mathrm{shortest}\:\mathrm{solution}\: \\ $$
Question Number 204056 Answers: 2 Comments: 0
$$\begin{cases}{\mathrm{x}\:+\:\mathrm{2y}\:+\:\mathrm{z}\:=\:\mathrm{8}}\\{\mathrm{3x}\:+\:\mathrm{2y}\:+\:\mathrm{z}\:=\:\mathrm{10}}\\{\mathrm{4x}\:+\:\mathrm{3y}\:−\:\mathrm{2z}\:=\:\mathrm{4}}\end{cases} \\ $$$$\mathrm{Solve}\:\mathrm{with}\:\mathrm{the}\:\mathrm{help}\:\mathrm{of}\:\mathrm{matrix} \\ $$
Question Number 204055 Answers: 2 Comments: 0
$$\mathrm{y}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{arctg}\:\left(\mathrm{x}^{\mathrm{4}} \right) \\ $$$$\mathrm{find}:\:\:\mathrm{y}^{'} \:=\:? \\ $$
Question Number 204054 Answers: 2 Comments: 0
$$\mathrm{y}\:=\:\sqrt{\mathrm{sinx}}\:+\:\mathrm{cos}^{\mathrm{3}} \mathrm{x} \\ $$$$\mathrm{find}:\:\:\mathrm{y}^{'} \:=\:? \\ $$
Question Number 204041 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\begin{vmatrix}{\mathrm{1}}&{\mathrm{7}}&{−\mathrm{1}}\\{\mathrm{9}}&{−\mathrm{3}}&{\mathrm{5}}\\{−\mathrm{1}}&{\mathrm{5}}&{\mathrm{3}}\end{vmatrix}=\:? \\ $$
Question Number 204039 Answers: 2 Comments: 0
$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{7}}&{−\mathrm{1}}\\{\mathrm{9}}&{−\mathrm{3}}&{\boldsymbol{\mathrm{x}}}\\{−\mathrm{1}}&{\mathrm{5}}&{\mathrm{3}}\end{vmatrix}=\:\mathrm{0}\:\:\:\Rightarrow\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$
Pg 172 Pg 173 Pg 174 Pg 175 Pg 176 Pg 177 Pg 178 Pg 179 Pg 180 Pg 181
Terms of Service
Privacy Policy
Contact: info@tinkutara.com