Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 177

Question Number 204168    Answers: 1   Comments: 1

Question Number 204158    Answers: 2   Comments: 2

Question Number 204157    Answers: 0   Comments: 2

hello frinds I have a question when the most accurate math sofward it solves the most complex math problems .what is the need for us to spend hours to solve that? (Ofcourse i myself love math) (sorry i′m bad in english)

$${hello}\:{frinds} \\ $$$${I}\:{have}\:{a}\:{question} \\ $$$${when}\:{the}\:{most}\:{accurate}\:{math}\:{sofward} \\ $$$${it}\:{solves}\:{the}\:{most}\:{complex}\:{math} \\ $$$${problems}\:.{what}\:{is}\:{the}\:{need}\:{for}\:{us} \\ $$$${to}\:{spend}\:{hours}\:{to}\:{solve}\:{that}? \\ $$$$\left({Ofcourse}\:{i}\:{myself}\:{love}\:{math}\right) \\ $$$$\left({sorry}\:{i}'{m}\:{bad}\:{in}\:{english}\right) \\ $$

Question Number 204152    Answers: 2   Comments: 0

the maximum value of f(x,y) = xy−x^3 y^2 attained over the square 0≤x≤1;0≤y≤1 is

$$\:\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\mathrm{xy}−\mathrm{x}^{\mathrm{3}} \mathrm{y}^{\mathrm{2}} \\ $$$$\:\mathrm{attained}\:\mathrm{over}\:\mathrm{the}\:\mathrm{square}\:\mathrm{0}\leqslant\mathrm{x}\leqslant\mathrm{1};\mathrm{0}\leqslant\mathrm{y}\leqslant\mathrm{1}\:\mathrm{is} \\ $$

Question Number 204145    Answers: 1   Comments: 0

Question Number 204142    Answers: 1   Comments: 0

Solve: x^x = 27^(x − 3)

$$\mathrm{Solve}:\:\:\mathrm{x}^{\mathrm{x}} \:\:=\:\:\mathrm{27}^{\mathrm{x}\:\:−\:\:\mathrm{3}} \\ $$

Question Number 204141    Answers: 1   Comments: 0

Question Number 204129    Answers: 2   Comments: 0

a , b , x , y ∈ R a + b = 23 ax + by = 79 ax^2 + by^2 = 217 ax^3 + by^3 = 661 Find: ax^4 + by^4 = ?

$$\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{x}\:,\:\mathrm{y}\:\in\:\mathbb{R} \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:=\:\mathrm{23} \\ $$$$\mathrm{ax}\:+\:\mathrm{by}\:=\:\mathrm{79} \\ $$$$\mathrm{ax}^{\mathrm{2}} \:+\:\mathrm{by}^{\mathrm{2}} \:=\:\mathrm{217} \\ $$$$\mathrm{ax}^{\mathrm{3}} \:+\:\mathrm{by}^{\mathrm{3}} \:=\:\mathrm{661} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{by}^{\mathrm{4}} \:=\:? \\ $$

Question Number 204123    Answers: 2   Comments: 1

Question Number 204117    Answers: 0   Comments: 4

solve for θ in terms of y when y = e^θ (cosθ+sinθ)

$${solve}\:{for}\:\theta\:{in}\:{terms}\:{of}\:{y}\:{when}\:{y}\:=\:{e}^{\theta} \left({cos}\theta+{sin}\theta\right)\:\:\: \\ $$

Question Number 204174    Answers: 1   Comments: 0

Question Number 204105    Answers: 3   Comments: 0

find the maximum of (1 + cosx) sinx without derivative.

$$\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:\left(\mathrm{1}\:+\:\mathrm{cos}{x}\right)\:\mathrm{sin}{x} \\ $$$$\mathrm{without}\:\mathrm{derivative}. \\ $$

Question Number 204104    Answers: 0   Comments: 0

Question Number 204102    Answers: 0   Comments: 0

Question Number 204101    Answers: 0   Comments: 0

Find the possible values for x and y if 10cosx + 12cos(x+y)=5 10sinx + 12sin(x+y)=20.66

$${Find}\:{the}\:{possible}\:{values}\:{for}\:{x}\:{and}\:{y}\:{if} \\ $$$$\mathrm{10}{cosx}\:+\:\mathrm{12}{cos}\left({x}+{y}\right)=\mathrm{5} \\ $$$$\mathrm{10}{sinx}\:+\:\mathrm{12}{sin}\left({x}+{y}\right)=\mathrm{20}.\mathrm{66} \\ $$

Question Number 204083    Answers: 2   Comments: 0

Given that tan(A + B) = 1 and tan(A - B) = 1/7 find tan A and tan B

Given that tan(A + B) = 1 and tan(A - B) = 1/7 find tan A and tan B

Question Number 204082    Answers: 1   Comments: 3

(√(((√(x^2 +66^2 ))+x)/x))−(√(x(√(x^2 +66^2 ))−x^2 ))=5

$$\sqrt{\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{66}^{\mathrm{2}} }+{x}}{{x}}}−\sqrt{{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{66}^{\mathrm{2}} }−{x}^{\mathrm{2}} }=\mathrm{5} \\ $$

Question Number 204081    Answers: 1   Comments: 0

what is the area of the largest square that can be enclosed in a triangle with an area of 1?

$${what}\:{is}\:{the}\:{area}\:{of}\:{the}\:{largest}\:{square} \\ $$$${that}\:{can}\:{be}\:{enclosed}\:{in}\:{a}\:{triangle} \\ $$$${with}\:{an}\:{area}\:{of}\:\mathrm{1}? \\ $$

Question Number 204078    Answers: 0   Comments: 1

Question Number 204072    Answers: 1   Comments: 0

((sin^2 θ)/2)=sin 2θ? (90°>θ>0°)

$$\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{2}}=\mathrm{sin}\:\mathrm{2}\theta?\:\left(\mathrm{90}°>\theta>\mathrm{0}°\right) \\ $$

Question Number 204062    Answers: 4   Comments: 0

I. A(−5, −1); B(3, −5); C(5, 2) ar(△ABC) = ? II. A(5, 3); B(2, 5); C(−5, 3); D(−4, −3) ar(□ABCD) = ? shortest solution

$$\mathrm{I}.\:\:\:\:\:\:\:\mathrm{A}\left(−\mathrm{5},\:−\mathrm{1}\right);\:\mathrm{B}\left(\mathrm{3},\:−\mathrm{5}\right);\:\mathrm{C}\left(\mathrm{5},\:\mathrm{2}\right)\:\:\:\:\:\:{ar}\left(\bigtriangleup\mathrm{ABC}\right)\:=\:? \\ $$$$\mathrm{II}.\:\:\:\:\:\mathrm{A}\left(\mathrm{5},\:\mathrm{3}\right);\:\mathrm{B}\left(\mathrm{2},\:\mathrm{5}\right);\:\mathrm{C}\left(−\mathrm{5},\:\mathrm{3}\right);\:\mathrm{D}\left(−\mathrm{4},\:−\mathrm{3}\right)\:\:\:\:\:\:\:{ar}\left(\Box\mathrm{ABCD}\right)\:=\:? \\ $$$$\mathrm{shortest}\:\mathrm{solution}\: \\ $$

Question Number 204056    Answers: 2   Comments: 0

{ ((x + 2y + z = 8)),((3x + 2y + z = 10)),((4x + 3y − 2z = 4)) :} Solve with the help of matrix

$$\begin{cases}{\mathrm{x}\:+\:\mathrm{2y}\:+\:\mathrm{z}\:=\:\mathrm{8}}\\{\mathrm{3x}\:+\:\mathrm{2y}\:+\:\mathrm{z}\:=\:\mathrm{10}}\\{\mathrm{4x}\:+\:\mathrm{3y}\:−\:\mathrm{2z}\:=\:\mathrm{4}}\end{cases} \\ $$$$\mathrm{Solve}\:\mathrm{with}\:\mathrm{the}\:\mathrm{help}\:\mathrm{of}\:\mathrm{matrix} \\ $$

Question Number 204055    Answers: 2   Comments: 0

y = (2/3) arctg (x^4 ) find: y^′ = ?

$$\mathrm{y}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{arctg}\:\left(\mathrm{x}^{\mathrm{4}} \right) \\ $$$$\mathrm{find}:\:\:\mathrm{y}^{'} \:=\:? \\ $$

Question Number 204054    Answers: 2   Comments: 0

y = (√(sinx)) + cos^3 x find: y^′ = ?

$$\mathrm{y}\:=\:\sqrt{\mathrm{sinx}}\:+\:\mathrm{cos}^{\mathrm{3}} \mathrm{x} \\ $$$$\mathrm{find}:\:\:\mathrm{y}^{'} \:=\:? \\ $$

Question Number 204041    Answers: 2   Comments: 0

Find: determinant ((1,7,(−1)),(9,(−3),5),((−1),5,3))= ?

$$\mathrm{Find}:\:\:\:\begin{vmatrix}{\mathrm{1}}&{\mathrm{7}}&{−\mathrm{1}}\\{\mathrm{9}}&{−\mathrm{3}}&{\mathrm{5}}\\{−\mathrm{1}}&{\mathrm{5}}&{\mathrm{3}}\end{vmatrix}=\:? \\ $$

Question Number 204039    Answers: 2   Comments: 0

determinant ((1,7,(−1)),(9,(−3),x),((−1),5,3))= 0 ⇒ x = ?

$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{7}}&{−\mathrm{1}}\\{\mathrm{9}}&{−\mathrm{3}}&{\boldsymbol{\mathrm{x}}}\\{−\mathrm{1}}&{\mathrm{5}}&{\mathrm{3}}\end{vmatrix}=\:\mathrm{0}\:\:\:\Rightarrow\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

  Pg 172      Pg 173      Pg 174      Pg 175      Pg 176      Pg 177      Pg 178      Pg 179      Pg 180      Pg 181   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com