Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 177
Question Number 204105 Answers: 3 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:\left(\mathrm{1}\:+\:\mathrm{cos}{x}\right)\:\mathrm{sin}{x} \\ $$$$\mathrm{without}\:\mathrm{derivative}. \\ $$
Question Number 204104 Answers: 0 Comments: 0
Question Number 204102 Answers: 0 Comments: 0
Question Number 204101 Answers: 0 Comments: 0
$${Find}\:{the}\:{possible}\:{values}\:{for}\:{x}\:{and}\:{y}\:{if} \\ $$$$\mathrm{10}{cosx}\:+\:\mathrm{12}{cos}\left({x}+{y}\right)=\mathrm{5} \\ $$$$\mathrm{10}{sinx}\:+\:\mathrm{12}{sin}\left({x}+{y}\right)=\mathrm{20}.\mathrm{66} \\ $$
Question Number 204083 Answers: 2 Comments: 0
Given that tan(A + B) = 1 and tan(A - B) = 1/7 find tan A and tan B
Question Number 204082 Answers: 1 Comments: 3
$$\sqrt{\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{66}^{\mathrm{2}} }+{x}}{{x}}}−\sqrt{{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{66}^{\mathrm{2}} }−{x}^{\mathrm{2}} }=\mathrm{5} \\ $$
Question Number 204081 Answers: 1 Comments: 0
$${what}\:{is}\:{the}\:{area}\:{of}\:{the}\:{largest}\:{square} \\ $$$${that}\:{can}\:{be}\:{enclosed}\:{in}\:{a}\:{triangle} \\ $$$${with}\:{an}\:{area}\:{of}\:\mathrm{1}? \\ $$
Question Number 204078 Answers: 0 Comments: 1
Question Number 204072 Answers: 1 Comments: 0
$$\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{2}}=\mathrm{sin}\:\mathrm{2}\theta?\:\left(\mathrm{90}°>\theta>\mathrm{0}°\right) \\ $$
Question Number 204062 Answers: 4 Comments: 0
$$\mathrm{I}.\:\:\:\:\:\:\:\mathrm{A}\left(−\mathrm{5},\:−\mathrm{1}\right);\:\mathrm{B}\left(\mathrm{3},\:−\mathrm{5}\right);\:\mathrm{C}\left(\mathrm{5},\:\mathrm{2}\right)\:\:\:\:\:\:{ar}\left(\bigtriangleup\mathrm{ABC}\right)\:=\:? \\ $$$$\mathrm{II}.\:\:\:\:\:\mathrm{A}\left(\mathrm{5},\:\mathrm{3}\right);\:\mathrm{B}\left(\mathrm{2},\:\mathrm{5}\right);\:\mathrm{C}\left(−\mathrm{5},\:\mathrm{3}\right);\:\mathrm{D}\left(−\mathrm{4},\:−\mathrm{3}\right)\:\:\:\:\:\:\:{ar}\left(\Box\mathrm{ABCD}\right)\:=\:? \\ $$$$\mathrm{shortest}\:\mathrm{solution}\: \\ $$
Question Number 204056 Answers: 2 Comments: 0
$$\begin{cases}{\mathrm{x}\:+\:\mathrm{2y}\:+\:\mathrm{z}\:=\:\mathrm{8}}\\{\mathrm{3x}\:+\:\mathrm{2y}\:+\:\mathrm{z}\:=\:\mathrm{10}}\\{\mathrm{4x}\:+\:\mathrm{3y}\:−\:\mathrm{2z}\:=\:\mathrm{4}}\end{cases} \\ $$$$\mathrm{Solve}\:\mathrm{with}\:\mathrm{the}\:\mathrm{help}\:\mathrm{of}\:\mathrm{matrix} \\ $$
Question Number 204055 Answers: 2 Comments: 0
$$\mathrm{y}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{arctg}\:\left(\mathrm{x}^{\mathrm{4}} \right) \\ $$$$\mathrm{find}:\:\:\mathrm{y}^{'} \:=\:? \\ $$
Question Number 204054 Answers: 2 Comments: 0
$$\mathrm{y}\:=\:\sqrt{\mathrm{sinx}}\:+\:\mathrm{cos}^{\mathrm{3}} \mathrm{x} \\ $$$$\mathrm{find}:\:\:\mathrm{y}^{'} \:=\:? \\ $$
Question Number 204041 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\begin{vmatrix}{\mathrm{1}}&{\mathrm{7}}&{−\mathrm{1}}\\{\mathrm{9}}&{−\mathrm{3}}&{\mathrm{5}}\\{−\mathrm{1}}&{\mathrm{5}}&{\mathrm{3}}\end{vmatrix}=\:? \\ $$
Question Number 204039 Answers: 2 Comments: 0
$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{7}}&{−\mathrm{1}}\\{\mathrm{9}}&{−\mathrm{3}}&{\boldsymbol{\mathrm{x}}}\\{−\mathrm{1}}&{\mathrm{5}}&{\mathrm{3}}\end{vmatrix}=\:\mathrm{0}\:\:\:\Rightarrow\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$
Question Number 204038 Answers: 1 Comments: 0
$$\mathrm{y}\:=\:\left(\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{1}\right)\:\centerdot\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \\ $$$$\Rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$
Question Number 204024 Answers: 1 Comments: 0
Find the Cartesian equation of x(t) = 2 cos t And y(t) = 3 cos t
Question Number 204019 Answers: 1 Comments: 2
$$ \\ $$$$\:\:\:\:\:{G}\:{is}\:{a}\:{group}\:: \\ $$$$\:\:\:\:\:{prove}\:{that}\::\:\:\frac{{G}}{{Z}\:\left({G}\:\right)}\:\cong\:{Inn}\left({G}\:\right) \\ $$$$\:\:\:\:{Where}\:,\:{Inn}\left({G}\right)=\:\left\{{f}\:\mid\:{f}:\:{G}\:\overset{{f}\:{is}\:{an}\:{Automorphism}} {\rightarrow}\:{G}\right\} \\ $$$$ \\ $$
Question Number 204018 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:{Aut}\:\left(\mathbb{Z}\:\right)=\:? \\ $$$$\:\:\:\:\:\:\:{where}\:,\:{Aut}\:\left({G}\:\right)=\:\left\{\:{f}\:\mid\:{f}\::{G}\:\underset{{G}\:{is}\:{a}\:{group}} {\overset{{f}\:{is}\:{a}\:{isomorphism}} {\rightarrow}}\:{G}\right\} \\ $$
Question Number 204005 Answers: 2 Comments: 1
$$\mathrm{Find}: \\ $$$$\mathrm{cos44}°\:−\:\mathrm{cos84}°\:+\:\mathrm{ctg45}°\:=\:? \\ $$
Question Number 203995 Answers: 3 Comments: 0
$$\mathrm{3}{x}+\mathrm{4}{x}=\mathrm{5} \\ $$
Question Number 203994 Answers: 2 Comments: 0
$${d}\left(\frac{{x}!}{{dx}}\right)=? \\ $$
Question Number 203988 Answers: 0 Comments: 0
Question Number 203985 Answers: 0 Comments: 8
Question Number 203980 Answers: 3 Comments: 0
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{{ax}^{\mathrm{2}} +{bx}+\mathrm{6}}{{x}^{\mathrm{2}} −{x}−\mathrm{2}}=\mathrm{10}\:\:;\:\:\:{find}\:\:{a}=?\:\wedge\:{b}=? \\ $$
Question Number 203975 Answers: 0 Comments: 0
$$\mathrm{Let}\:\mathrm{P}\in\mathbb{C}\left[\mathrm{X}\right] \\ $$$$\mathrm{p}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{p}^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{1} \\ $$$$\mathrm{p}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\mathrm{determin}\:\mathrm{all}\:\mathrm{polynom}\: \\ $$
Pg 172 Pg 173 Pg 174 Pg 175 Pg 176 Pg 177 Pg 178 Pg 179 Pg 180 Pg 181
Terms of Service
Privacy Policy
Contact: info@tinkutara.com