Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1769

Question Number 29880    Answers: 0   Comments: 3

Question Number 29875    Answers: 0   Comments: 0

Prove the convergence or divergent of (((n − 1)/n))_(n = 1) ^∞

$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{or}\:\mathrm{divergent}\:\mathrm{of}\:\:\:\:\:\:\:\:\:\:\left(\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\right)_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \\ $$$$ \\ $$

Question Number 29877    Answers: 0   Comments: 2

Question Number 29857    Answers: 0   Comments: 0

find ∫_0 ^(+∞) ((ln(x))/((1+x)^3 ))dx .

$${find}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx}\:. \\ $$

Question Number 29856    Answers: 0   Comments: 1

find ∫_0 ^(2π) ((cos(nθ))/(2+3cosθ))dθ . n from N.

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left({n}\theta\right)}{\mathrm{2}+\mathrm{3}{cos}\theta}{d}\theta\:.\:\:{n}\:{from}\:{N}. \\ $$

Question Number 29855    Answers: 1   Comments: 1

find ∫_0 ^∞ (x^2 /((1+x^2 )( 3+x^2 )))dx .

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:\mathrm{3}+{x}^{\mathrm{2}} \right)}{dx}\:. \\ $$

Question Number 29854    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) (((x^2 +2)dx)/(x^4 +8x^2 −16x +20)) .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\frac{\left({x}^{\mathrm{2}} +\mathrm{2}\right){dx}}{{x}^{\mathrm{4}} \:+\mathrm{8}{x}^{\mathrm{2}} −\mathrm{16}{x}\:+\mathrm{20}}\:. \\ $$

Question Number 29853    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) (dx/(x^2 +2ix +2−4i)) .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{ix}\:+\mathrm{2}−\mathrm{4}{i}}\:. \\ $$

Question Number 29852    Answers: 0   Comments: 0

let f(z) =z cos^2 ((π/z)) find Res(f,0).

$${let}\:{f}\left({z}\right)\:={z}\:{cos}^{\mathrm{2}} \left(\frac{\pi}{{z}}\right)\:\:{find}\:{Res}\left({f},\mathrm{0}\right). \\ $$

Question Number 29851    Answers: 0   Comments: 0

let give f(z)=((tanz −z)/((1−cosz)^2 )) find Res(f,0).

$${let}\:{give}\:{f}\left({z}\right)=\frac{{tanz}\:−{z}}{\left(\mathrm{1}−{cosz}\right)^{\mathrm{2}} }\:\:{find}\:{Res}\left({f},\mathrm{0}\right). \\ $$

Question Number 29850    Answers: 0   Comments: 0

find I = ∫_0 ^∞ (((1+x)^(−(1/4)) −(1+x)^(−(3/4)) )/x)dx .

$${find}\:\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\:−\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} }{{x}}{dx}\:. \\ $$

Question Number 29849    Answers: 0   Comments: 1

let give a>0 ,b>0 find the vslue of ∫_0 ^(+∞) ((e^(−at) −e^(−bt) )/t) cos(xt)dt .

$${let}\:{give}\:{a}>\mathrm{0}\:,{b}>\mathrm{0}\:{find}\:{the}\:{vslue}\:{of}\: \\ $$$$\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{e}^{−{at}} \:−{e}^{−{bt}} }{{t}}\:{cos}\left({xt}\right){dt}\:. \\ $$

Question Number 29848    Answers: 0   Comments: 1

find Σ_(k=0) ^n cos(kx) and Σ_(k=0) ^n sin(kx) .

$${find}\:\:\sum_{{k}=\mathrm{0}} ^{{n}} {cos}\left({kx}\right)\:{and}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{sin}\left({kx}\right)\:. \\ $$

Question Number 29847    Answers: 0   Comments: 0

θ ∈]0,π[ find he values of Σ_(n=1) ^∞ (1/n)cos(nθ) and Σ_(n=1) ^∞ (1/n)sin(nθ) .

$$\left.\theta\:\in\right]\mathrm{0},\pi\left[\:\:\:{find}\:{he}\:{values}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}{cos}\left({n}\theta\right)\:{and}\right. \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}{sin}\left({n}\theta\right)\:. \\ $$

Question Number 29846    Answers: 0   Comments: 1

give the developpement at integr series for f(x)=((ln(1+x)−ln(1−x))/x) 2)find lim_(x→0) f(x).

$${give}\:{the}\:{developpement}\:\:{at}\:{integr}\:{series}\:{for} \\ $$$${f}\left({x}\right)=\frac{{ln}\left(\mathrm{1}+{x}\right)−{ln}\left(\mathrm{1}−{x}\right)}{{x}} \\ $$$$\left.\mathrm{2}\right){find}\:\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:{f}\left({x}\right). \\ $$

Question Number 29845    Answers: 0   Comments: 2

find lim_(x→0) ((tanx −x−(1/3)x^3 )/x^5 ) .

$${find}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\:\frac{{tanx}\:−{x}−\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} }{{x}^{\mathrm{5}} }\:\:. \\ $$

Question Number 29844    Answers: 0   Comments: 0

let give f_α (t)=cos(αt) 2π periodic with t ∈[−π,π]and α∈ R−Z 1) developp f_α at fourier serie and prove that cotan(απ)= (1/(απ)) +Σ_(n=1) ^∞ ((2α)/(π(α^2 −n^2 ))) 2)let x∈]0,π[ ant g(t)=cotant −(1/t) if t∈]0,x]andg(0)=0 prove that g is continue in[0,x] and find ∫_0 ^x g(t)dt 3)prove that ∀ t∈[0,x] g(t)=2t Σ_(n=1) ^∞ (1/(t^2 −n^2 π^(24) )) 4) chow that Π_(n=1) ^∞ (1−(x^2 /(n^2 π^2 )))= ((sinx)/x) and for x∈]−π,π[ sinx=x Π_(n=1) ^∞ (1−(x^2 /(n^2 π^2 ))) .

$${let}\:{give}\:{f}_{\alpha} \left({t}\right)={cos}\left(\alpha{t}\right)\:\:\mathrm{2}\pi\:{periodic}\:{with}\:{t}\:\in\left[−\pi,\pi\right]{and} \\ $$$$\alpha\in\:{R}−{Z} \\ $$$$\left.\mathrm{1}\right)\:{developp}\:{f}_{\alpha} \:\:{at}\:{fourier}\:{serie}\:{and}\:{prove}\:{that} \\ $$$${cotan}\left(\alpha\pi\right)=\:\frac{\mathrm{1}}{\alpha\pi}\:\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{2}\alpha}{\pi\left(\alpha^{\mathrm{2}} −{n}^{\mathrm{2}} \right)} \\ $$$$\left.\mathrm{2}\left.\right)\left.{let}\:{x}\in\right]\mathrm{0},\pi\left[\:{ant}\:{g}\left({t}\right)={cotant}\:−\frac{\mathrm{1}}{{t}}\:\:{if}\:{t}\in\right]\mathrm{0},{x}\right]{andg}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${prove}\:{that}\:{g}\:{is}\:{continue}\:{in}\left[\mathrm{0},{x}\right]\:{and}\:{find}\:\int_{\mathrm{0}} ^{{x}} {g}\left({t}\right){dt} \\ $$$$\left.\mathrm{3}\right){prove}\:{that}\:\forall\:{t}\in\left[\mathrm{0},{x}\right]\:{g}\left({t}\right)=\mathrm{2}{t}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{t}^{\mathrm{2}} −{n}^{\mathrm{2}} \pi^{\mathrm{24}} } \\ $$$$\left.\mathrm{4}\left.\right)\:{chow}\:{that}\:\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\right)=\:\frac{{sinx}}{{x}}\:\:{and}\:{for}\:{x}\in\right]−\pi,\pi\left[\right. \\ $$$${sinx}={x}\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\right)\:\:. \\ $$

Question Number 29842    Answers: 0   Comments: 1

prove that ∀ x∈]0,1[ (1/(Γ(x).Γ(1−x)))=x Π_(n=1) ^∞ (1−(x^2 /n^2 )).

$$\left.{prove}\:{that}\:\forall\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\:\:\:\:\:\frac{\mathrm{1}}{\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)}={x}\:\prod_{{n}=\mathrm{1}} ^{\infty} \left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right).\right. \\ $$

Question Number 29841    Answers: 0   Comments: 0

prove that ∀ x∈]0,1[ Γ(x).Γ(1−x)= (π/(sin(πx))) (compliments formula).

$$\left.{prove}\:{that}\:\forall\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\:\:\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)=\:\frac{\pi}{{sin}\left(\pi{x}\right)}\right. \\ $$$$\left({compliments}\:{formula}\right). \\ $$

Question Number 29885    Answers: 1   Comments: 2

∫(1/(1+sinx))dx=?

$$\int\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}{x}}{dx}=? \\ $$

Question Number 29839    Answers: 0   Comments: 0

find Π_(n=1) ^∞ (1−(x^2 /(n^2 π^2 ))).

$${find}\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\right). \\ $$

Question Number 29838    Answers: 0   Comments: 0

find Π_(n=1) ^∞ (1−(1/(4n^2 ))).

$${find}\:\prod_{{n}=\mathrm{1}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\right). \\ $$

Question Number 29837    Answers: 0   Comments: 0

let give T_n (x)=cos(n arcosx) with x∈[−1,1] 1) prove that T_n is a polynomial and T_n ∈Z[x] 2)calculate T_1 , T_2 , T_3 ,and T_4 3) prove that T_(n+2) (x)=2x T_(n+1) (x)−T_n (x) 4)find the roots of T_n and factorize T_n (x).

$${let}\:{give}\:\:{T}_{{n}} \left({x}\right)={cos}\left({n}\:{arcosx}\right)\:{with}\:{x}\in\left[−\mathrm{1},\mathrm{1}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{T}_{{n}} \:{is}\:{a}\:{polynomial}\:{and}\:{T}_{{n}} \in{Z}\left[{x}\right] \\ $$$$\left.\mathrm{2}\right){calculate}\:{T}_{\mathrm{1}} ,\:{T}_{\mathrm{2}} ,\:{T}_{\mathrm{3}} ,{and}\:{T}_{\mathrm{4}} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:{T}_{{n}+\mathrm{2}} \left({x}\right)=\mathrm{2}{x}\:{T}_{{n}+\mathrm{1}} \left({x}\right)−{T}_{{n}} \left({x}\right) \\ $$$$\left.\mathrm{4}\right){find}\:{the}\:{roots}\:{of}\:{T}_{{n}} \:{and}\:{factorize}\:{T}_{{n}} \left({x}\right). \\ $$

Question Number 29836    Answers: 0   Comments: 0

let give u_n = Σ_(q=1) ^n (1/(n^2 +q)) find lim_(n→+∞) (1−nu_n )n.

$${let}\:{give}\:{u}_{{n}} =\:\sum_{{q}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{q}}\:\:{find}\:{lim}_{{n}\rightarrow+\infty} \left(\mathrm{1}−{nu}_{{n}} \right){n}. \\ $$

Question Number 29835    Answers: 0   Comments: 0

let give f(x)=−x +2 +((√(x+1))/x) 1) study the variation of and give the graph C_f 2)give the equation of tangent at C_f in point A(1,f(1))

$${let}\:{give}\:{f}\left({x}\right)=−{x}\:+\mathrm{2}\:+\frac{\sqrt{{x}+\mathrm{1}}}{{x}} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{variation}\:{of}\:{and}\:{give}\:{the}\:{graph}\:{C}_{{f}} \\ $$$$\left.\mathrm{2}\right){give}\:{the}\:{equation}\:{of}\:{tangent}\:{at}\:{C}_{{f}} \:{in}\:{point}\:{A}\left(\mathrm{1},{f}\left(\mathrm{1}\right)\right) \\ $$

Question Number 29834    Answers: 0   Comments: 1

find (1/(cos^4 ((π/9)))) +(1/(cos^4 (((3π)/9)))) + (1/(cos^4 (((5π)/9)))) +(1/(cos^4 (((7π)/9)))) .

$${find}\:\:\:\:\frac{\mathrm{1}}{{cos}^{\mathrm{4}} \left(\frac{\pi}{\mathrm{9}}\right)}\:+\frac{\mathrm{1}}{{cos}^{\mathrm{4}} \left(\frac{\mathrm{3}\pi}{\mathrm{9}}\right)}\:+\:\frac{\mathrm{1}}{{cos}^{\mathrm{4}} \left(\frac{\mathrm{5}\pi}{\mathrm{9}}\right)}\:+\frac{\mathrm{1}}{{cos}^{\mathrm{4}} \left(\frac{\mathrm{7}\pi}{\mathrm{9}}\right)}\:. \\ $$

  Pg 1764      Pg 1765      Pg 1766      Pg 1767      Pg 1768      Pg 1769      Pg 1770      Pg 1771      Pg 1772      Pg 1773   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com