Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1768

Question Number 31188    Answers: 0   Comments: 2

Question Number 31187    Answers: 0   Comments: 4

Question Number 31149    Answers: 1   Comments: 1

here is a question really troubling me. A cylindrical tube rolling down a slope of inclination θ moves a distance L in the time T. The equation relating these quantities is L(3+(a^2 /P))=QT^2 sin θ where a is the internal radius of the tube and P and Q are constants.What are the units of P and Q?

$${here}\:{is}\:{a}\:{question}\:{really}\:{troubling} \\ $$$${me}. \\ $$$$ \\ $$$${A}\:{cylindrical}\:{tube}\:{rolling}\:{down}\:{a} \\ $$$${slope}\:{of}\:{inclination}\:\theta\:{moves}\:{a} \\ $$$${distance}\:{L}\:{in}\:{the}\:{time}\:{T}.\:{The} \\ $$$${equation}\:{relating}\:{these}\:{quantities}\:{is} \\ $$$$ \\ $$$$\:\:\:{L}\left(\mathrm{3}+\frac{{a}^{\mathrm{2}} }{{P}}\right)={QT}^{\mathrm{2}} \mathrm{sin}\:\theta\:{where}\:{a}\:{is} \\ $$$${the}\:{internal}\:{radius}\:{of}\:{the}\:{tube}\:{and} \\ $$$${P}\:\:{and}\:{Q}\:{are}\:{constants}.{What}\:{are} \\ $$$${the}\:{units}\:{of}\:{P}\:{and}\:{Q}? \\ $$

Question Number 31133    Answers: 0   Comments: 3

Question Number 31125    Answers: 2   Comments: 1

Let n be a positive integer. Then x^2 + 1 is a factor of (x^4 + 3)^n − [(x^2 + 3)(x^2 − 1)]^n for ... (A) All n (B) Odd n (C) Even n (D) n ≥ 3 (E) None of these options

$$\mathrm{Let}\:{n}\:\mathrm{be}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{integer}.\:\mathrm{Then}\:{x}^{\mathrm{2}} \:+\:\mathrm{1}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of}\:\left({x}^{\mathrm{4}} \:+\:\mathrm{3}\right)^{{n}} \:−\:\left[\left({x}^{\mathrm{2}} \:+\:\mathrm{3}\right)\left({x}^{\mathrm{2}} \:−\:\mathrm{1}\right)\right]^{{n}} \\ $$$$\mathrm{for}\:... \\ $$$$\left(\mathrm{A}\right)\:\mathrm{All}\:{n} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{Odd}\:{n} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{Even}\:{n} \\ $$$$\left(\mathrm{D}\right)\:{n}\:\geqslant\:\mathrm{3} \\ $$$$\left(\mathrm{E}\right)\:\mathrm{None}\:\mathrm{of}\:\mathrm{these}\:\mathrm{options} \\ $$

Question Number 31118    Answers: 1   Comments: 1

Question Number 31114    Answers: 1   Comments: 2

Question Number 31113    Answers: 2   Comments: 0

Two lines through the point (1,−3) are tamgent to the curve y=x^2 . Find the equation of these two lines and make a sketch to verify your results.

$${Two}\:{lines}\:{through}\:{the}\:{point}\:\left(\mathrm{1},−\mathrm{3}\right) \\ $$$${are}\:{tamgent}\:{to}\:{the}\:{curve}\:{y}={x}^{\mathrm{2}} . \\ $$$${Find}\:{the}\:{equation}\:{of}\:{these}\:{two} \\ $$$${lines}\:{and}\:{make}\:{a}\:{sketch}\:{to}\:{verify} \\ $$$${your}\:{results}. \\ $$

Question Number 31111    Answers: 1   Comments: 1

Question Number 31109    Answers: 0   Comments: 5

a^4 + b^4 + 13 is a possible largest prime number . a and b are prime numbers . Find a and b .

$$\boldsymbol{{a}}^{\mathrm{4}} \:+\:\boldsymbol{{b}}^{\mathrm{4}} \:+\:\mathrm{13}\:\:\:{is}\:\:{a}\:\:{possible}\:\:{largest}\:\:{prime}\:\:{number}\:. \\ $$$$\boldsymbol{{a}}\:\:{and}\:\:\boldsymbol{{b}}\:\:{are}\:\:{prime}\:\:{numbers}\:. \\ $$$${Find}\:\:\boldsymbol{{a}}\:\:{and}\:\:\boldsymbol{{b}}\:. \\ $$

Question Number 31107    Answers: 0   Comments: 2

calculate ∫_(−∞) ^(+∞) (dx/((x^2 +x+1)^n )) with n>1.

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{{n}} }\:\:{with}\:{n}>\mathrm{1}. \\ $$

Question Number 31106    Answers: 0   Comments: 0

prove that ∫_0 ^∞ e^(−x^2 ) =lim_(n→+∞) ∫_0 ^∞ (dx/((1+x^2 )^n )) . 2) prove that (1/(√π)) =lim_(n→∞) ((1.3.5....(2n−3))/(2.4.6....(2n−2))) (√n) (wallis formula).

$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}^{\mathrm{2}} } ={lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:. \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\frac{\mathrm{1}}{\sqrt{\pi}}\:={lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}....\left(\mathrm{2}{n}−\mathrm{3}\right)}{\mathrm{2}.\mathrm{4}.\mathrm{6}....\left(\mathrm{2}{n}−\mathrm{2}\right)}\:\sqrt{{n}} \\ $$$$\left({wallis}\:{formula}\right). \\ $$

Question Number 31105    Answers: 0   Comments: 1

prove that ∫_0 ^x e^(−t^2 ) dt =((√π)/2) −(e^(−x^2 ) /(√π)) ∫_0 ^∞ (e^(−x^2 t^2 ) /(1+t^2 )) dt with x>0

$${prove}\:{that}\:\int_{\mathrm{0}} ^{{x}} \:\:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:=\frac{\sqrt{\pi}}{\mathrm{2}}\:−\frac{{e}^{−{x}^{\mathrm{2}} } }{\sqrt{\pi}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}} {t}^{\mathrm{2}} } }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:{with}\:{x}>\mathrm{0} \\ $$

Question Number 31104    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) e^(−(x^2 +2x−1)) dx .

$${find}\:\:\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\mathrm{2}{x}−\mathrm{1}\right)} {dx}\:. \\ $$

Question Number 31103    Answers: 0   Comments: 0

find ∫_0 ^∞ e^(−(x −(a/x))^2 ) dx with a≥0 .

$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({x}\:−\frac{{a}}{{x}}\right)^{\mathrm{2}} } {dx}\:\:{with}\:\:{a}\geqslant\mathrm{0}\:. \\ $$

Question Number 31102    Answers: 0   Comments: 2

find ∫_0 ^(+∞) ((lnx)/(x^2 +a^2 ))dx 2) find the value of ∫_0 ^∞ ((lnx)/((x^2 +a^2 )^3 )) .

$${find}\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{lnx}}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{3}} }\:. \\ $$

Question Number 31101    Answers: 0   Comments: 0

let give f(x)= ∫_0 ^x t^2 e^(−2t^2 ) sin(2(x−t))dt calculate f^(′′) +4f then finf f(x).

$${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:{t}^{\mathrm{2}} \:{e}^{−\mathrm{2}{t}^{\mathrm{2}} } {sin}\left(\mathrm{2}\left({x}−{t}\right)\right){dt}\:{calculate} \\ $$$${f}^{''} \:+\mathrm{4}{f}\:\:{then}\:{finf}\:{f}\left({x}\right). \\ $$

Question Number 31100    Answers: 0   Comments: 1

find ∫_0 ^∞ ((cosx −cos(3x))/x) e^(−2x) dx.

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cosx}\:−{cos}\left(\mathrm{3}{x}\right)}{{x}}\:{e}^{−\mathrm{2}{x}} {dx}. \\ $$

Question Number 31099    Answers: 0   Comments: 1

find ∫_0 ^∞ ((arctan(2x) −arctanx)/x)dx.

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{2}{x}\right)\:−{arctanx}}{{x}}{dx}. \\ $$

Question Number 31098    Answers: 0   Comments: 2

find the value of ∫_1 ^∞ ((arctan(x+1) −arctanx)/x^2 )dx.

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{1}} ^{\infty} \:\:\frac{{arctan}\left({x}+\mathrm{1}\right)\:−{arctanx}}{{x}^{\mathrm{2}} }{dx}. \\ $$

Question Number 31097    Answers: 0   Comments: 1

calculate interms of a and b the integral ∫_0 ^∞ ((arctan(bt) −arctan(at))/t)dt with a and b>0.

$${calculate}\:{interms}\:{of}\:{a}\:{and}\:{b}\:{the}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({bt}\right)\:−{arctan}\left({at}\right)}{{t}}{dt}\:\:{with}\:{a}\:{and}\:{b}>\mathrm{0}. \\ $$

Question Number 31096    Answers: 0   Comments: 1

find ∫_0 ^π (dx/((a+bcosx)^2 )) with a>b>0 then give the value of ∫_0 ^π (dx/((2+cosx)^2 ))

$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\left({a}+{bcosx}\right)^{\mathrm{2}} }\:{with}\:{a}>{b}>\mathrm{0}\:{then}\:{give}\:{the} \\ $$$${value}\:{of}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\left(\mathrm{2}+{cosx}\right)^{\mathrm{2}} } \\ $$

Question Number 31095    Answers: 0   Comments: 1

find I_n (x)= ∫_0 ^∞ t^n e^(−xt) dt x>0 n∈ N.

$${find}\:{I}_{{n}} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} \:{e}^{−{xt}} {dt}\:\:\:\:{x}>\mathrm{0}\:{n}\in\:{N}. \\ $$

Question Number 31094    Answers: 0   Comments: 0

m and n integrs and y≥0 find ∫_0 ^y x^m (y−x)^n dx

$${m}\:{and}\:{n}\:{integrs}\:{and}\:{y}\geqslant\mathrm{0}\:{find}\:\int_{\mathrm{0}} ^{{y}} \:{x}^{{m}} \left({y}−{x}\right)^{{n}} {dx} \\ $$

Question Number 31093    Answers: 0   Comments: 1

calculate ∫_0 ^∞ e^(−x^2 ) cos(2xy)dx.

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {cos}\left(\mathrm{2}{xy}\right){dx}. \\ $$

Question Number 31092    Answers: 0   Comments: 1

find ∫_0 ^∞ ((ln(1+4x^2 ))/(1+2x^2 ))dx .

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }{dx}\:. \\ $$

  Pg 1763      Pg 1764      Pg 1765      Pg 1766      Pg 1767      Pg 1768      Pg 1769      Pg 1770      Pg 1771      Pg 1772   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com