Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1767

Question Number 32206    Answers: 0   Comments: 0

Find Σ_(k=1) ^∞ (∫_(k−1) ^k x^(−x) dx) .

$$\mathrm{Find}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\underset{\mathrm{k}−\mathrm{1}} {\overset{\mathrm{k}} {\int}}\mathrm{x}^{−\mathrm{x}} \:\mathrm{dx}\right)\:. \\ $$$$ \\ $$

Question Number 32203    Answers: 0   Comments: 5

Number of solutions of the equation z^3 +(([3(z^− )^2 ])/(∣z∣))=0 where z is a complex no.

$$\boldsymbol{{N}}{umber}\:{of}\:{solutions}\:{of}\:{the}\:{equation} \\ $$$${z}^{\mathrm{3}} +\frac{\left[\mathrm{3}\left(\overset{−} {{z}}\right)^{\mathrm{2}} \right]}{\mid{z}\mid}=\mathrm{0}\:{where}\:{z}\:{is}\:{a}\:{complex}\:{no}. \\ $$

Question Number 32191    Answers: 1   Comments: 1

Question Number 32211    Answers: 1   Comments: 1

Question Number 32184    Answers: 1   Comments: 0

If one vertex of the triangle having maximum area that can be inscribed in the circle ∣z−i∣=5 is 3−3i, then find other vertices of triangle.

$$\boldsymbol{{I}}{f}\:{one}\:{vertex}\:{of}\:{the}\:{triangle}\:{having} \\ $$$${maximum}\:{area}\:{that}\:{can}\:{be}\:{inscribed} \\ $$$${in}\:{the}\:{circle}\:\mid\boldsymbol{{z}}−\boldsymbol{{i}}\mid=\mathrm{5}\:{is}\:\mathrm{3}−\mathrm{3}\boldsymbol{{i}},\:{then} \\ $$$${find}\:{other}\:{vertices}\:{of}\:{triangle}. \\ $$

Question Number 32181    Answers: 1   Comments: 1

Intercept made by the circle zz^− +a^− z+az^− +r=0 on the real axis on complex plane is :−

$$\boldsymbol{{I}}{ntercept}\:{made}\:{by}\:{the}\:{circle}\: \\ $$$$\boldsymbol{{z}}\overset{−} {\boldsymbol{{z}}}+\overset{−} {\boldsymbol{{a}z}}+\boldsymbol{{a}}\overset{−} {\boldsymbol{{z}}}+\boldsymbol{{r}}=\mathrm{0}\:\boldsymbol{{o}}{n}\:{the}\:{real}\:{axis}\:{on} \\ $$$${complex}\:{plane}\:{is}\::− \\ $$

Question Number 32163    Answers: 0   Comments: 0

If the corrdinater of the verticle of an eqvilateral triangle with length x are (x_(1+) y_1 ),(y_1 +y_2 ) and (x_3 ,y_3 ) then ( determinant (((x_1 y_1 2)),((x_2 y_2 2)),((x_3 y_3 2))))^2 =3a^4 ?

$${If}\:{the}\:{corrdinater}\:{of}\:{the}\:{verticle}\:{of}\:{an} \\ $$$${eqvilateral}\:{triangle}\:{with}\:{length}\:{x}\:{are} \\ $$$$\left({x}_{\mathrm{1}+} {y}_{\mathrm{1}} \right),\left({y}_{\mathrm{1}} +{y}_{\mathrm{2}} \right)\:{and}\:\left({x}_{\mathrm{3}} ,{y}_{\mathrm{3}} \right)\:{then} \\ $$$$\left(\begin{vmatrix}{{x}_{\mathrm{1}} \:\:\:{y}_{\mathrm{1}} \:\:\:\mathrm{2}}\\{{x}_{\mathrm{2}} \:\:\:{y}_{\mathrm{2}} \:\:\:\mathrm{2}}\\{{x}_{\mathrm{3}} \:\:\:{y}_{\mathrm{3}} \:\:\:\mathrm{2}}\end{vmatrix}\right)^{\mathrm{2}} =\mathrm{3}{a}^{\mathrm{4}} ? \\ $$

Question Number 32161    Answers: 1   Comments: 0

Let a function F :R→R be defined by f(x)=1+ax,α≠ 0 for all X ∈ R. Show that f is invertible and find its inverse function.Also find the value (s) of α if inverse of f is itself

$${Let}\:{a}\:{function}\:{F}\::{R}\rightarrow{R}\:{be}\:{defined}\:{by} \\ $$$${f}\left({x}\right)=\mathrm{1}+{ax},\alpha\neq\:\mathrm{0}\:{for}\:{all}\:{X}\:\in\:{R}.\:{Show} \\ $$$${that}\:{f}\:{is}\:{invertible}\:{and}\:{find}\:{its}\:{inverse} \\ $$$${function}.{Also}\:{find}\:{the}\:{value}\:\left({s}\right)\:{of}\:\alpha \\ $$$${if}\:{inverse}\:{of}\:{f}\:{is}\:{itself} \\ $$

Question Number 32160    Answers: 1   Comments: 0

If z=cosθ+isinθ is a root of equation a_0 z^n +a_1 z^(n−1) +a_2 z^(n−2) +.....+a_(n−1) z+a_n =0 then prove that: i) a_0 +a_1 cos θ+a_2 cos 2θ+.....+a_n cos nθ=0 ii) a_1 sin θ + a_2 sin 2θ+....+a_n sin nθ=0.

$$\boldsymbol{{I}}{f}\:{z}={cos}\theta+{isin}\theta\:{is}\:{a}\:{root}\:{of}\:{equation} \\ $$$${a}_{\mathrm{0}} {z}^{{n}} +{a}_{\mathrm{1}} {z}^{{n}−\mathrm{1}} +{a}_{\mathrm{2}} {z}^{{n}−\mathrm{2}} +.....+{a}_{{n}−\mathrm{1}} {z}+{a}_{{n}} =\mathrm{0} \\ $$$${then}\:{prove}\:{that}: \\ $$$$\left.{i}\right)\:{a}_{\mathrm{0}} +{a}_{\mathrm{1}} \mathrm{cos}\:\theta+{a}_{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\theta+.....+{a}_{{n}} \mathrm{cos}\:{n}\theta=\mathrm{0} \\ $$$$\left.{ii}\right)\:{a}_{\mathrm{1}} \mathrm{sin}\:\theta\:+\:{a}_{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta+....+{a}_{{n}} \mathrm{sin}\:{n}\theta=\mathrm{0}. \\ $$

Question Number 32159    Answers: 1   Comments: 2

Express the following in a+ib form: (((cos x+isin x)(cos y+isin y))/((cosa+isin a)(cosb+isinb))).

$$\boldsymbol{{E}}{xpress}\:{the}\:{following}\:{in}\:{a}+{ib}\:{form}: \\ $$$$\frac{\left(\mathrm{cos}\:{x}+{i}\mathrm{sin}\:{x}\right)\left(\mathrm{cos}\:{y}+{i}\mathrm{sin}\:{y}\right)}{\left({cosa}+{i}\mathrm{sin}\:{a}\right)\left({cosb}+{isinb}\right)}. \\ $$

Question Number 32158    Answers: 0   Comments: 0

an elevator of mass 250kg is carrying 3 person whose masses 60kg, 80kg, 100kg and the force exacted by the motion is 5000N. a) With what acceleration will the elevator ascend b) Starting from rest,how far will it go in 5s. (acceleration to gravity G=9.8ms^(−2) ).

$${an}\:{elevator}\:{of}\:{mass}\:\mathrm{250}{kg}\:{is}\:{carrying}\:\mathrm{3}\:{person}\:{whose}\:{masses}\:\mathrm{60}{kg},\:\mathrm{80}{kg},\:\mathrm{100}{kg}\:{and}\:{the}\:{force}\:{exacted}\:{by}\:{the}\:{motion}\:{is}\:\mathrm{5000}{N}. \\ $$$$\left.{a}\right)\:{With}\:{what}\:{acceleration}\:{will}\:{the}\:{elevator}\:{ascend} \\ $$$$\left.{b}\right)\:{Starting}\:{from}\:{rest},{how}\:{far}\:{will}\:{it}\:{go}\:{in}\:\mathrm{5}{s}. \\ $$$$\left({acceleration}\:{to}\:{gravity}\:{G}=\mathrm{9}.\mathrm{8}{ms}^{−\mathrm{2}} \right). \\ $$

Question Number 32164    Answers: 0   Comments: 0

Determine wether the relation on the set R of all real number as R={(a,b):a,b∈R and a−b +(√3) ∈ s where s is the set of all irrational no) is reflexive, symmetric and transitive?

$${Determine}\:{wether}\:{the}\:{relation}\:{on}\:{the} \\ $$$${set}\:{R}\:{of}\:{all}\:{real}\:{number}\:{as} \\ $$$${R}=\left\{\left({a},{b}\right):{a},{b}\in{R}\:{and}\:{a}−{b}\:+\sqrt{\mathrm{3}}\:\in\:{s}\:\right. \\ $$$$\left.{where}\:{s}\:{is}\:{the}\:{set}\:{of}\:{all}\:{irrational}\:{no}\right) \\ $$$${is}\:{reflexive},\:{symmetric}\:{and}\:{transitive}? \\ $$

Question Number 32156    Answers: 0   Comments: 2

evaluate∫((√(cos 2x))/(sin x))dx

$${evaluate}\int\frac{\sqrt{{cos}\:\mathrm{2}{x}}}{{sin}\:{x}}{dx} \\ $$

Question Number 32142    Answers: 0   Comments: 0

Question Number 32150    Answers: 0   Comments: 0

Question Number 32139    Answers: 0   Comments: 4

Find the ∫ ((x+1)/(x^2 +x+1))dx

$${F}\boldsymbol{{ind}}\:\boldsymbol{{the}} \\ $$$$\int\:\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$

Question Number 32137    Answers: 0   Comments: 0

lim_(x→5) ((f(x)g(x) − 3g(x) − 3)/(f(x) − 3(x − 5))) = 0 Find the value of g′(5)

$$\underset{{x}\rightarrow\mathrm{5}} {\mathrm{lim}}\:\frac{{f}\left({x}\right){g}\left({x}\right)\:−\:\mathrm{3}{g}\left({x}\right)\:−\:\mathrm{3}}{{f}\left({x}\right)\:−\:\mathrm{3}\left({x}\:−\:\mathrm{5}\right)}\:=\:\mathrm{0} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{g}'\left(\mathrm{5}\right) \\ $$

Question Number 32132    Answers: 0   Comments: 0

∫(1/((x+1)ln(x)))dx=?

$$\int\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right){ln}\left({x}\right)}{dx}=? \\ $$

Question Number 32151    Answers: 1   Comments: 0

Question Number 32126    Answers: 1   Comments: 1

Question Number 32110    Answers: 1   Comments: 0

If y=1+x^2 +x^3 and x=1+α, where α is small, show that y≈3+5α. Hence, find the increase in y when x is increased from 1 to 1.02

$$\mathrm{If}\:\mathrm{y}=\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{3}} \:\mathrm{and}\:\mathrm{x}=\mathrm{1}+\alpha,\:\mathrm{where}\:\alpha\:\mathrm{is}\:\mathrm{small},\:\mathrm{show} \\ $$$$\mathrm{that}\:\mathrm{y}\approx\mathrm{3}+\mathrm{5}\alpha.\:\mathrm{Hence},\:\mathrm{find}\:\mathrm{the}\:\mathrm{increase}\:\mathrm{in}\:\mathrm{y}\:\mathrm{when} \\ $$$$\mathrm{x}\:\mathrm{is}\:\mathrm{increased}\:\mathrm{from}\:\mathrm{1}\:\mathrm{to}\:\mathrm{1}.\mathrm{02} \\ $$

Question Number 32109    Answers: 0   Comments: 0

Question Number 32100    Answers: 0   Comments: 0

Question Number 32099    Answers: 1   Comments: 0

Question Number 32098    Answers: 0   Comments: 14

Question Number 32094    Answers: 0   Comments: 0

Find the ordinary argument (arg z) and the principal argument (Arg z) of z=(i/(−2−2i))

$${Find}\:{the}\:{ordinary}\:{argument} \\ $$$$\left({arg}\:{z}\right)\:{and}\:{the}\:{principal}\:{argument} \\ $$$$\left({Arg}\:{z}\right)\:{of}\:{z}=\frac{{i}}{−\mathrm{2}−\mathrm{2}{i}} \\ $$

  Pg 1762      Pg 1763      Pg 1764      Pg 1765      Pg 1766      Pg 1767      Pg 1768      Pg 1769      Pg 1770      Pg 1771   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com