Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1765

Question Number 23223    Answers: 1   Comments: 0

Question Number 23253    Answers: 1   Comments: 8

Question Number 23190    Answers: 1   Comments: 1

lim_(x→∞) (((x−2)/(3x+10)))^(5x)

$$\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\boldsymbol{\mathrm{lim}}}\left(\frac{\boldsymbol{\mathrm{x}}−\mathrm{2}}{\mathrm{3}\boldsymbol{\mathrm{x}}+\mathrm{10}}\right)^{\mathrm{5}\boldsymbol{\mathrm{x}}} \\ $$

Question Number 23208    Answers: 1   Comments: 0

Is it possible to find how many real roots exist in the equation x^4 + ∣x∣ = 3 without find all the value of x?

$$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{find}\:\mathrm{how}\:\mathrm{many}\:\mathrm{real}\:\mathrm{roots}\: \\ $$$$\mathrm{exist}\:\mathrm{in}\:\mathrm{the}\:\mathrm{equation} \\ $$$${x}^{\mathrm{4}} \:+\:\mid{x}\mid\:=\:\mathrm{3} \\ $$$$\mathrm{without}\:\mathrm{find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:{x}? \\ $$

Question Number 23205    Answers: 0   Comments: 0

thank u.....

$${thank}\:{u}..... \\ $$

Question Number 23187    Answers: 0   Comments: 0

plz anyone answer the question 23181...plz plz plz...

$${plz}\:\:\:{anyone}\:{answer}\:{the}\:{question}\: \\ $$$$\mathrm{23181}...{plz}\:{plz}\:{plz}... \\ $$

Question Number 23181    Answers: 0   Comments: 2

show that the curve with parametric equcations x=t^2 −3t+5, y=t^3 +t^2 −10t+9 intersect at the point (3,1).

$${show}\:{that}\:{the}\:{curve}\:{with}\:{parametric}\: \\ $$$${equcations}\:\:{x}={t}^{\mathrm{2}} \:−\mathrm{3}{t}+\mathrm{5}, \\ $$$${y}={t}^{\mathrm{3}} \:+{t}^{\mathrm{2}} \:−\mathrm{10}{t}+\mathrm{9}\:{intersect}\:{at}\:{the}\: \\ $$$${point}\:\left(\mathrm{3},\mathrm{1}\right). \\ $$

Question Number 23179    Answers: 2   Comments: 1

Question Number 23212    Answers: 1   Comments: 1

Question Number 23170    Answers: 0   Comments: 2

Question Number 23215    Answers: 0   Comments: 0

Assertion: The element with electronic configuration [Xe]^(54) 4f^1 5d^1 6s^2 is a d- block element. Reason: The last electron enters the d- orbital.

$$\boldsymbol{\mathrm{Assertion}}:\:\mathrm{The}\:\mathrm{element}\:\mathrm{with}\:\mathrm{electronic} \\ $$$$\mathrm{configuration}\:\left[\mathrm{Xe}\right]^{\mathrm{54}} \:\mathrm{4}{f}^{\mathrm{1}} \:\mathrm{5}{d}^{\mathrm{1}} \:\mathrm{6}{s}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{a}\:{d}- \\ $$$$\mathrm{block}\:\mathrm{element}. \\ $$$$\boldsymbol{\mathrm{Reason}}:\:\mathrm{The}\:\mathrm{last}\:\mathrm{electron}\:\mathrm{enters}\:\mathrm{the}\:{d}- \\ $$$$\mathrm{orbital}. \\ $$

Question Number 23146    Answers: 0   Comments: 5

Square planar complex is formed by hybridisation of which atomic orbitals? (1) s, p_x , p_y , p_z (2) s, p_x , p_y , d_z^2 (3) s, p_x , p_y , d_(x^2 −y^2 ) (4) s, p_x , p_y , d_z^3

$$\mathrm{Square}\:\mathrm{planar}\:\mathrm{complex}\:\mathrm{is}\:\mathrm{formed}\:\mathrm{by} \\ $$$$\mathrm{hybridisation}\:\mathrm{of}\:\mathrm{which}\:\mathrm{atomic}\:\mathrm{orbitals}? \\ $$$$\left(\mathrm{1}\right)\:{s},\:{p}_{{x}} ,\:{p}_{{y}} ,\:{p}_{{z}} \\ $$$$\left(\mathrm{2}\right)\:{s},\:{p}_{{x}} ,\:{p}_{{y}} ,\:{d}_{{z}^{\mathrm{2}} } \\ $$$$\left(\mathrm{3}\right)\:{s},\:{p}_{{x}} ,\:{p}_{{y}} ,\:{d}_{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$\left(\mathrm{4}\right)\:{s},\:{p}_{{x}} ,\:{p}_{{y}} ,\:{d}_{{z}^{\mathrm{3}} } \\ $$

Question Number 23135    Answers: 1   Comments: 0

The standard enthalpy of formation of gaseous H_2 O at 298 K is −241.82 kJ mol^(−1) . Estimate its value of 100°C given the following values of the molar heat capacities at constant pressure: H_2 O(g) : 35.58 JK^(−1) mol^(−1) , H_2 (g) : 28.84 J mol^(−1) K^(−1) and O_2 (g) : 29.37 J mol^(−1) K^(−1) . Assume heat capacity to be independent of temperature.

$$\mathrm{The}\:\mathrm{standard}\:\mathrm{enthalpy}\:\mathrm{of}\:\mathrm{formation}\:\mathrm{of} \\ $$$$\mathrm{gaseous}\:\mathrm{H}_{\mathrm{2}} \mathrm{O}\:\mathrm{at}\:\mathrm{298}\:\mathrm{K}\:\mathrm{is}\:−\mathrm{241}.\mathrm{82}\:\mathrm{kJ} \\ $$$$\mathrm{mol}^{−\mathrm{1}} .\:\mathrm{Estimate}\:\mathrm{its}\:\mathrm{value}\:\mathrm{of}\:\mathrm{100}°\mathrm{C}\:\mathrm{given} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{values}\:\mathrm{of}\:\mathrm{the}\:\mathrm{molar}\:\mathrm{heat} \\ $$$$\mathrm{capacities}\:\mathrm{at}\:\mathrm{constant}\:\mathrm{pressure}: \\ $$$$\mathrm{H}_{\mathrm{2}} \mathrm{O}\left(\mathrm{g}\right)\::\:\mathrm{35}.\mathrm{58}\:\mathrm{JK}^{−\mathrm{1}} \:\mathrm{mol}^{−\mathrm{1}} ,\:\mathrm{H}_{\mathrm{2}} \left(\mathrm{g}\right)\:: \\ $$$$\mathrm{28}.\mathrm{84}\:\mathrm{J}\:\mathrm{mol}^{−\mathrm{1}} \:\mathrm{K}^{−\mathrm{1}} \:\mathrm{and}\:\mathrm{O}_{\mathrm{2}} \left(\mathrm{g}\right)\::\:\mathrm{29}.\mathrm{37}\:\mathrm{J} \\ $$$$\mathrm{mol}^{−\mathrm{1}} \:\mathrm{K}^{−\mathrm{1}} .\:\mathrm{Assume}\:\mathrm{heat}\:\mathrm{capacity}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{independent}\:\mathrm{of}\:\mathrm{temperature}. \\ $$

Question Number 23138    Answers: 1   Comments: 1

Question Number 23133    Answers: 1   Comments: 0

Find the minimum surface area of a solid circular cylinder , if its volume is 16π cm^3 (leave your answer in terms of π)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{surface}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{solid}\:\mathrm{circular}\:\mathrm{cylinder}\:,\:\:\mathrm{if}\:\mathrm{its}\:\mathrm{volume}\:\mathrm{is} \\ $$$$\mathrm{16}\pi\:\mathrm{cm}^{\mathrm{3}} \:\:\:\left(\mathrm{leave}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\pi\right) \\ $$

Question Number 23131    Answers: 0   Comments: 7

Question Number 23130    Answers: 0   Comments: 1

A baloon filled with helium rises against gravity increasing its potential energy. The speed of the baloon also increases as it rises. How do you reconcile this with the law of conservation of mechanical energy? You can neglect viscous drag of air and assume that density of air is constant.

$$\mathrm{A}\:\mathrm{baloon}\:\mathrm{filled}\:\mathrm{with}\:\mathrm{helium}\:\mathrm{rises}\:\mathrm{against} \\ $$$$\mathrm{gravity}\:\mathrm{increasing}\:\mathrm{its}\:\mathrm{potential}\:\mathrm{energy}. \\ $$$$\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{baloon}\:\mathrm{also}\:\mathrm{increases} \\ $$$$\mathrm{as}\:\mathrm{it}\:\mathrm{rises}.\:\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{reconcile}\:\mathrm{this} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{law}\:\mathrm{of}\:\mathrm{conservation}\:\mathrm{of} \\ $$$$\mathrm{mechanical}\:\mathrm{energy}?\:\mathrm{You}\:\mathrm{can}\:\mathrm{neglect} \\ $$$$\mathrm{viscous}\:\mathrm{drag}\:\mathrm{of}\:\mathrm{air}\:\mathrm{and}\:\mathrm{assume}\:\mathrm{that} \\ $$$$\mathrm{density}\:\mathrm{of}\:\mathrm{air}\:\mathrm{is}\:\mathrm{constant}. \\ $$

Question Number 23162    Answers: 1   Comments: 1

Question Number 23122    Answers: 0   Comments: 3

Question Number 23110    Answers: 0   Comments: 0

In which apptent give when to 10 grams stop in 800−th apptent add 0.1 gram of copper?

$${In}\:{which}\:{apptent}\:{give}\:{when}\:{to}\:\mathrm{10}\:{grams}\:{stop}\:{in}\:\mathrm{800}−{th}\:{apptent}\:{add}\:\:\mathrm{0}.\mathrm{1}\:{gram}\:{of}\:{copper}? \\ $$

Question Number 23109    Answers: 0   Comments: 1

Concourse started in 24 November and takes 12 days. Which date ends Concourse?

$${Concourse}\:{started}\:{in}\:\mathrm{24}\:{November}\:{and}\:{takes}\:\mathrm{12}\:{days}. \\ $$$${Which}\:{date}\:{ends}\:{Concourse}? \\ $$

Question Number 23108    Answers: 1   Comments: 0

∫e^(−x) sin2x dx

$$\int\mathrm{e}^{−\mathrm{x}} \mathrm{sin2x}\:\mathrm{dx} \\ $$

Question Number 23105    Answers: 0   Comments: 4

(∣m^2 −n^2 ∣,2mn,m^2 +n^2 ) is pythagorean triplet for all m,n∈N. This can be proved easily.Is the vice versa of the statement is also true? I-E If for a,b,c∈N ,a^2 +b^2 =c^2 then there exist m,n∈N such that m^2 +n^2 =c and {a,b}={∣m^2 −n^2 ∣,2mn}

$$\left(\mid\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} \mid,\mathrm{2mn},\mathrm{m}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} \right)\:\mathrm{is}\:\mathrm{pythagorean} \\ $$$$\mathrm{triplet}\:\mathrm{for}\:\mathrm{all}\:\mathrm{m},\mathrm{n}\in\mathbb{N}.\:\mathrm{This}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{proved}\:\mathrm{easily}.\mathrm{Is}\:\mathrm{the}\:\mathrm{vice}\:\mathrm{versa}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{statement}\:\mathrm{is}\:\mathrm{also}\:\mathrm{true}? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}-\mathrm{E} \\ $$$$\mathrm{If}\:\:\mathrm{for}\:\mathrm{a},\mathrm{b},\mathrm{c}\in\mathbb{N}\:,\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{c}^{\mathrm{2}} \:\mathrm{then}\:\mathrm{there}\: \\ $$$$\mathrm{exist}\:\mathrm{m},\mathrm{n}\in\mathbb{N}\:\mathrm{such}\:\mathrm{that}\:\mathrm{m}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} =\mathrm{c}\:\mathrm{and} \\ $$$$\left\{\mathrm{a},\mathrm{b}\right\}=\left\{\mid\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} \mid,\mathrm{2mn}\right\} \\ $$

Question Number 23104    Answers: 1   Comments: 0

show tht the curve with parametric equcations x=t^2 ,y=t^3 −9t intersect at the point (9,0).

$${show}\:{tht}\:{the}\:{curve}\:{with}\:{parametric}\:{equcations} \\ $$$${x}={t}^{\mathrm{2}} \:,{y}={t}^{\mathrm{3}} \:−\mathrm{9}{t}\:{intersect}\:{at}\:{the}\:{point}\:\left(\mathrm{9},\mathrm{0}\right). \\ $$

Question Number 23103    Answers: 0   Comments: 1

Can anyone please solve question number 23057

$${Can}\:{anyone}\:{please}\:{solve}\:{question} \\ $$$${number}\:\mathrm{23057} \\ $$

Question Number 23096    Answers: 0   Comments: 1

Solve: 3^(x ) = ((27)/x) + 18

$$\mathrm{Solve}:\:\:\mathrm{3}^{\mathrm{x}\:} =\:\frac{\mathrm{27}}{\mathrm{x}}\:+\:\mathrm{18} \\ $$

  Pg 1760      Pg 1761      Pg 1762      Pg 1763      Pg 1764      Pg 1765      Pg 1766      Pg 1767      Pg 1768      Pg 1769   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com