Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1765
Question Number 30517 Answers: 0 Comments: 1
$${let}\:{g}\left({x}\right)=\:{e}^{{x}} {cosx}\:\:{find}\:\:{g}^{\left({n}\right)} \left({x}\right)\:. \\ $$
Question Number 30515 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{find}\:{a}\:{form}\:{of}\:{f}^{\left({n}\right)} \left({x}\right)\:. \\ $$
Question Number 30514 Answers: 0 Comments: 0
$${find}\:{lim}_{{n}\rightarrow\infty} \:\prod_{{k}=\mathrm{1}} ^{{n}} \:\left(\mathrm{1}−\:\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{3}} }\right).\: \\ $$
Question Number 30513 Answers: 0 Comments: 1
Question Number 30512 Answers: 0 Comments: 1
$${find}\:\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\sqrt{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}}\:{dt}\:. \\ $$
Question Number 30511 Answers: 0 Comments: 1
$${find}\:\:{lim}_{{x}\rightarrow+\infty} \:\:{e}^{{x}} \:\left[\frac{\mathrm{1}}{{x}}\right]. \\ $$
Question Number 30510 Answers: 0 Comments: 0
$${find}\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+\:} } \:\:\:\:\sqrt{{x}}\:\left[\:\frac{\mathrm{1}}{{x}}\right]\:\:{and}\:{lim}_{{x}\rightarrow+\infty} \:\:\frac{\left[{x}\right]}{{x}}\:. \\ $$
Question Number 30508 Answers: 0 Comments: 1
$${find}\:{I}=\:\int\:\:{e}^{{arcsinx}} {dx}\:. \\ $$
Question Number 30507 Answers: 0 Comments: 0
$${find}\:\int_{−\pi} ^{\pi} \:\:\frac{{dx}}{\mathrm{2}+{cosx}} \\ $$$$\left.\mathrm{2}\right)\:{if}\:\:\frac{\mathrm{1}}{\mathrm{2}+{cosx}}=\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}\geqslant\mathrm{1}} {a}_{{n}} \:{cos}\left({nx}\right)\:\:{find}\:{a}_{\mathrm{0}} \:{and}\:{a}_{{n}} \:. \\ $$
Question Number 30506 Answers: 0 Comments: 0
$${find}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{t}}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:{with}\:{x}>\mathrm{0}. \\ $$
Question Number 30509 Answers: 0 Comments: 0
$${f}\:{function}\:{continue}\:{at}\:{o}\:{and}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{f}\left(\mathrm{2}{x}\right)−{f}\left({x}\right)}{{x}}={l} \\ $$$${prove}\:{that}\:{f}\:{is}\:{derivable}\:{at}\:{o}\:{and}\:{f}^{'} \left(\mathrm{0}\right)={l}. \\ $$
Question Number 30505 Answers: 0 Comments: 0
$${find}\:\:{A}=\sum_{{k}=\mathrm{0}} ^{{n}} \:{ch}\left({a}+{kb}\right)\:{and}\:{B}=\sum_{{k}=\mathrm{0}} ^{{n}} \:{sh}\left({a}+{kb}\right). \\ $$
Question Number 30504 Answers: 1 Comments: 0
$${find}\:{lim}_{{x}\rightarrow\infty} \:{x}^{\mathrm{2}} \left(\:{e}^{\frac{\mathrm{1}}{{x}}} \:\:\:−\:{e}^{\frac{\mathrm{1}}{{x}+\mathrm{1}}} \right)\:. \\ $$
Question Number 30502 Answers: 1 Comments: 0
$${find}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \left({sinx}\:+{cosx}\right)^{\frac{\mathrm{1}}{{x}}} \:\:. \\ $$
Question Number 30501 Answers: 0 Comments: 0
$${let}\:{put}\:{w}={e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:\:\:\:\:{find}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\left({x}+{w}^{{k}} \right)^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} {n}\left({x}+{w}^{{k}} \right)^{{n}−\mathrm{1}} \:\:. \\ $$$$ \\ $$
Question Number 30500 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:. \\ $$
Question Number 30499 Answers: 0 Comments: 0
$${let}\:{put}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\sqrt{{tant}}\:\:{dt}\:{with}\:{x}>\mathrm{0}\:\:{find}\:{F}\left({x}\right). \\ $$
Question Number 30498 Answers: 1 Comments: 0
$${find}\:\:{I}=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \:{arcsin}\left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}\:\:. \\ $$
Question Number 30497 Answers: 0 Comments: 0
$${integrate}\:\:\mathrm{2}{xy}^{'} \:−{y}\:=\frac{\mathrm{2}}{\mathrm{3}}\:{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:. \\ $$
Question Number 30496 Answers: 0 Comments: 0
$${find}\:\:{A}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{cos}\left({kx}\right)\:{and}\:{B}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{sin}\left({kx}\right) \\ $$
Question Number 30495 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}\:\:\:\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$
Question Number 30494 Answers: 1 Comments: 0
$${find}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:\:. \\ $$
Question Number 30493 Answers: 0 Comments: 0
$${study}\:{tbe}\:{sequence}\:\:{x}_{{n}+\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}−{x}_{{n}} }\:{with}\:{x}_{{o}} \neq\mathrm{2}. \\ $$
Question Number 30492 Answers: 0 Comments: 0
$${let}\:\left({u}_{\left.{n}\right)} \:\:\:/\:\:\:{u}_{{n}+\mathrm{1}} =\:{u}_{{n}} \:\:+\frac{\mathrm{1}}{{n}}\:\:\:{find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \:{for}\right. \\ $$$${n}\rightarrow\infty\:. \\ $$$$ \\ $$
Question Number 30491 Answers: 0 Comments: 0
$${let}\:{A}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{n}}{{n}^{\mathrm{2}} \:+{k}^{\mathrm{2}} }\:{find}\:\:{lim}_{{n}\rightarrow\infty} {A}_{{n}} . \\ $$
Question Number 30490 Answers: 0 Comments: 0
$${f}\:{function}\:{derivable}\:{at}\:{o}\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{0}\:{let} \\ $$$${S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} {f}\left(\frac{{k}}{{n}^{\mathrm{2}} }\right)\:\:.{find}\:{lim}_{{n}\rightarrow\infty} {S}_{{n}} . \\ $$
Pg 1760 Pg 1761 Pg 1762 Pg 1763 Pg 1764 Pg 1765 Pg 1766 Pg 1767 Pg 1768 Pg 1769
Terms of Service
Privacy Policy
Contact: info@tinkutara.com