Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1764
Question Number 32008 Answers: 1 Comments: 3
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\left(\frac{\mathrm{1}}{{n}}\right)^{{n}} +\left(\frac{\mathrm{2}}{{n}}\right)^{{n}} +..+\left(\frac{{n}}{{n}}\right)^{{n}} \right]=... \\ $$
Question Number 32002 Answers: 1 Comments: 0
$${If}\:\:\boldsymbol{{z}}^{\mathrm{3}} =\bar {\boldsymbol{{z}}}\:{prove}\: \\ $$$${then}\:\mid\boldsymbol{{z}}\mid=\mathrm{1}. \\ $$
Question Number 31991 Answers: 0 Comments: 1
$${g}_{{n}} =\sqrt{{g}_{{n}−\mathrm{1}} +{g}_{{n}−\mathrm{2}} } \\ $$$${g}_{\mathrm{1}} =\mathrm{1} \\ $$$${g}_{\mathrm{2}} =\mathrm{3} \\ $$$${g}_{{n}} =.. \\ $$
Question Number 31990 Answers: 1 Comments: 3
$${a}_{{n}} =\mathrm{2}{a}_{{n}−\mathrm{1}} +\mathrm{3}{a}_{{n}−\mathrm{2}} \\ $$$${a}_{\mathrm{0}} =\mathrm{1} \\ $$$${a}_{\mathrm{1}} =\mathrm{2} \\ $$$${a}_{{n}} =... \\ $$
Question Number 31984 Answers: 0 Comments: 1
$${study}\:{the}\:{covergence}\:{of}\:\:\Sigma\:{u}_{{n}} \:\:{with} \\ $$$${u}_{{n}} =^{{n}} \sqrt{\frac{{n}}{{n}+\mathrm{1}}}\:−\mathrm{1}\:\:\:. \\ $$
Question Number 31983 Answers: 0 Comments: 2
$${calculate}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{n}^{\mathrm{2}} \:−\mathrm{2}}{{n}!}\:\:. \\ $$
Question Number 31982 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)}\:. \\ $$
Question Number 31981 Answers: 0 Comments: 1
$${find}\:{the}\:{nature}\:{of}\:\:\:\sum_{{n}\geqslant\mathrm{2}} \:\frac{\mathrm{1}}{{nln}\left({n}\right)}\:. \\ $$
Question Number 31980 Answers: 0 Comments: 0
$${let}\:−\mathrm{1}<{x}<\mathrm{1}\:{calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{x}^{{n}} }{\left(\mathrm{1}−{x}^{{n}} \right)\left(\mathrm{1}−{x}^{{n}+\mathrm{1}} \right)}\:\:. \\ $$
Question Number 31979 Answers: 0 Comments: 1
$${calculate}\:\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left({n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:\:. \\ $$
Question Number 31978 Answers: 1 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)\left(\mathrm{2}{n}+\mathrm{5}\right)}. \\ $$
Question Number 31977 Answers: 1 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$
Question Number 31976 Answers: 0 Comments: 0
$${let}\:{u}_{{n}} =^{{n}+\mathrm{1}} \sqrt{{n}+\mathrm{1}}\:−\:^{{n}} \sqrt{{n}}\:\:{find}\:{radius}\:{of}\:{convergence}\: \\ $$$${for}\:\:\Sigma\:{u}_{{n}} {z}^{{n}} \:\:\:\:\left({z}\in{C}\right). \\ $$
Question Number 31975 Answers: 0 Comments: 0
$${let}\:{u}_{{n}} =\:\int_{\mathrm{1}} ^{\infty} \:\:{e}^{−{t}^{{n}} } \:{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{n}\rightarrow\infty} \:{u}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \:\left({n}\rightarrow\infty\right) \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{radius}\:{of}\:{convergence}\:{of}\:\Sigma\:{u}_{{n}} {x}^{{n}} . \\ $$
Question Number 31974 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right){find}\:{I}\left({p},{q}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}^{{p}} \:\left(\mathrm{1}−{t}\right)^{{q}} \:{dt}\:\:{with}\:{pand}\:{q}\:{integrs} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{nature}\:{of}\:\Sigma\:\:{I}_{\left({n},{n}\right)} \\ $$
Question Number 31973 Answers: 0 Comments: 0
$${let}\:{give}\:{the}\:{sequence}\:\left({u}_{{n}} \right)\:\:/\:{u}_{\mathrm{0}} =\mathrm{1}\:{and}\:{u}_{\mathrm{1}} =−\mathrm{1}\:{and} \\ $$$${u}_{{n}+\mathrm{2}} =\:\mathrm{2}{u}_{{n}+\mathrm{1}\:} −{u}_{{n}} \:\:\:.{find}\:{the}\:{radius}\:{of}\:{convegence}\:{for} \\ $$$${this}\:{serie}. \\ $$
Question Number 31972 Answers: 0 Comments: 1
$$\left.{solve}\:{inside}\:\right]−\mathrm{1},\mathrm{1}\left[\:{the}\:{d}.{e}.\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{y}^{'} \:+{y}\:={e}^{−\mathrm{2}{x}} \:.\right. \\ $$
Question Number 31971 Answers: 0 Comments: 0
$${let}\:{consider}\:{the}\:{d}.{e}.\:{x}\left({x}−\mathrm{1}\right){y}^{''} \:+\mathrm{3}{xy}^{'} \:+{y}\:=\mathrm{0} \\ $$$${find}\:{a}\:{solution}\:{at}\:{form}\:\Sigma{a}_{{n}} {x}^{{n}} \:\:. \\ $$
Question Number 31970 Answers: 0 Comments: 0
$${find}\:{the}\:{nature}\:{of}\:\:\int_{\mathrm{2}} ^{\infty} \:\:\frac{{e}^{−{x}} }{\sqrt{{x}^{\mathrm{2}} \:−\mathrm{4}}}\:{dx}\:. \\ $$
Question Number 31969 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\left(\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }\right){arctant}\:{dt}. \\ $$
Question Number 31968 Answers: 0 Comments: 0
$${find}\:\:\:\int_{\mathrm{2}} ^{\sqrt{\mathrm{5}}} {x}\sqrt{\left({x}−\mathrm{2}\right)\left(\sqrt{\mathrm{5}}−{x}\right)}\:{dx}\:. \\ $$
Question Number 31967 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctanx}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}{dx}\:. \\ $$
Question Number 31966 Answers: 0 Comments: 0
$${let}\:{give}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{{n}} }\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{convergence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow\infty} \:\:{I}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{convergence}\:{of}\:{the}\:{serie}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\:{I}_{{n}} \:. \\ $$
Question Number 31965 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:−\mathrm{2}^{{n}} }{{n}}\:{x}^{{n}} \:\:{with}\:\mid{x}\mid\:<\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 31964 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right){find}\:\:{S}_{{n}} \:\:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:{sin}\left(\frac{{k}}{{n}}\right) \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:{S}_{{n}} \\ $$
Question Number 31963 Answers: 0 Comments: 0
$${find}\:{Re}\:\left(\frac{\mathrm{1}+{e}^{{i}\alpha} }{\mathrm{1}+{e}^{{i}\beta} }\right)\:{and}\:{Im}\:\left(\:\frac{\mathrm{1}+{e}^{{i}\alpha} }{\mathrm{1}+{e}^{{i}\beta} }\:\right)\:. \\ $$
Pg 1759 Pg 1760 Pg 1761 Pg 1762 Pg 1763 Pg 1764 Pg 1765 Pg 1766 Pg 1767 Pg 1768
Terms of Service
Privacy Policy
Contact: info@tinkutara.com