Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1763
Question Number 32307 Answers: 0 Comments: 0
Question Number 32306 Answers: 0 Comments: 0
Question Number 32305 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{1}} ^{{e}} \:{sin}\left({ln}\left({x}\right)\right){dx}\:. \\ $$
Question Number 32304 Answers: 0 Comments: 0
$${find}\:{lim}_{{x}\rightarrow+\infty} \:\:{e}^{−{x}^{\mathrm{2}} } \:\int_{\mathrm{0}} ^{{x}} \:\:{e}^{{t}^{\mathrm{2}} } {dt}\:\:. \\ $$
Question Number 32303 Answers: 0 Comments: 1
$${find}\:{lim}_{{n}\rightarrow\infty} \:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{2}{n}+{k}}\:\:. \\ $$
Question Number 32302 Answers: 1 Comments: 0
$${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\:\frac{{dx}}{{x}\:+{x}\sqrt{{x}}}\:. \\ $$
Question Number 32301 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{1}} ^{{e}} \:{ln}\left(\mathrm{1}+\sqrt{{x}}\right){dx}\:. \\ $$
Question Number 32300 Answers: 0 Comments: 0
$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} {n}^{\mathrm{2}} \:{e}^{{in}\theta} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{n}^{\mathrm{2}} {cos}\left({n}\theta\right)\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{n}^{\mathrm{2}} {sin}\left({n}\theta\right)=. \\ $$
Question Number 32299 Answers: 0 Comments: 0
$${find}\:{tbe}\:{nature}\:{of}\:{the}\:{serie}\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{{e}^{\frac{\mathrm{1}}{{n}}} \:\:+{e}^{−\frac{\mathrm{1}}{{n}}} }{{n}}\:. \\ $$$$ \\ $$
Question Number 32298 Answers: 0 Comments: 1
$${find}\:{tbe}\:{nature}\:{of}\:\:\sum_{{n}\geqslant\mathrm{2}} \:\:\:\frac{\mathrm{1}}{{n}\left({ln}\left({n}\right)\right)^{\mathrm{2}} }\:. \\ $$
Question Number 32297 Answers: 0 Comments: 0
$${calculate}\:\sum_{{n}\geqslant\mathrm{0}} \:\frac{{n}+\mathrm{2}^{{n}} }{{n}!}\:\:. \\ $$
Question Number 32296 Answers: 0 Comments: 0
$${let}\:\:{u}_{{n}} =\:\frac{\left({n}+\mathrm{1}\right)^{\alpha} \:\:−{n}^{\alpha} }{{n}^{\alpha−\mathrm{1}} }\:\:{with}\:\alpha>\mathrm{1}\:\:{find}\:{lim}_{{n}\rightarrow\infty} {u}_{{n}} \:\:. \\ $$
Question Number 32295 Answers: 0 Comments: 2
$${calculate}\:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(\mathrm{2}{k}+\mathrm{1}\right)\left(−\mathrm{1}\right)^{{k}} \:\:. \\ $$
Question Number 32294 Answers: 0 Comments: 1
$${let}\:{u}_{\mathrm{1}} =\mathrm{1}\:{and}\:{u}_{\mathrm{2}} =\mathrm{2}\:{and}\:{u}_{{n}} ={u}_{{n}−\mathrm{1}} \:+{u}_{{n}−\mathrm{2}} \\ $$$${find}\:{u}_{{n}} \:{interms}\:{of}\:{n}\:. \\ $$
Question Number 32293 Answers: 1 Comments: 1
$${let}\:{u}_{\mathrm{0}} =\:\sqrt{\mathrm{3}}\:\:{and}\:{u}_{{n}+\mathrm{1}} =\sqrt{\mathrm{2}+{u}_{{n}} ^{\mathrm{2}} } \\ $$$${calculate}\:{u}_{{n}} \:{interms}\:{of}\:{n}. \\ $$
Question Number 32291 Answers: 0 Comments: 0
$${let}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{n}+{k}}\:{prove}\:{that}\:\mathrm{0}\leqslant{u}_{{n}} \leqslant\mathrm{1}\:. \\ $$
Question Number 32290 Answers: 0 Comments: 1
$${let}\:{give}\:{u}_{\mathrm{0}} =\mathrm{1}\:{and}\:{u}_{{n}+\mathrm{1}} =\sqrt{\mathrm{1}+\sqrt{{u}_{{n}} }}\:\:{prove}\:{that}\:{u}_{{n}} \:{is} \\ $$$${increasing}\:. \\ $$
Question Number 32289 Answers: 0 Comments: 0
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:{ln}\:\left(\:\frac{{e}^{\mathrm{2}{x}} −\mathrm{1}}{{x}}\right)\:. \\ $$
Question Number 32288 Answers: 0 Comments: 0
$${study}\:{the}\:{function}\:{f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}+\mathrm{1}}\:{e}^{\frac{\mathrm{1}}{{x}}} \:\:. \\ $$
Question Number 32287 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{for}\:{x}>\mathrm{0}\:{prove}\:{that}\:\frac{\mathrm{1}}{{x}+\mathrm{1}}\:\leqslant{ln}\left({x}+\mathrm{1}\right)−{lnx}\:\leqslant\:\frac{\mathrm{1}}{{x}} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{u}_{{n}} =\:\sum_{{p}=\mathrm{1}} ^{{kn}} \:\frac{\mathrm{1}}{{p}}\:\:\:{find}\:{lim}_{{n}\rightarrow\infty\:} \:{u}_{{n}} . \\ $$
Question Number 32286 Answers: 0 Comments: 0
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{\frac{{e}^{{x}} }{\sqrt{\mathrm{1}+{x}}}\:−\mathrm{1}−\frac{{x}}{\mathrm{2}}}{{x}^{\mathrm{2}} }\:. \\ $$
Question Number 32281 Answers: 0 Comments: 0
$${calculate}\:{lim}_{{x}\rightarrow\infty} \sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\:−\sqrt{{x}^{\mathrm{2}} \:−{x}+\mathrm{1}}\:\:. \\ $$
Question Number 32280 Answers: 0 Comments: 0
$${let}\:{u}_{{n}} =\:{e}^{\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+\mathrm{1}}} \:\:−\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \:{and}\:{lim}_{{n}\rightarrow\infty} {u}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:\:\Sigma{u}_{{n}} \:. \\ $$
Question Number 32279 Answers: 0 Comments: 0
$${find}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{tan}^{\mathrm{2}} {x}}{\left(\mathrm{1}−{cosx}\right)}\:.\frac{{e}^{{x}} \:−\mathrm{1}}{{x}}\:\:\: \\ $$
Question Number 32282 Answers: 0 Comments: 0
$${let}\:{give}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\:\:{find}\:\:{f}^{\left({n}\right)} \left({o}\right)\:.\: \\ $$
Question Number 32278 Answers: 0 Comments: 0
$${calculate}\:{lim}_{{x}\rightarrow+\infty} \left({x}−\mathrm{1}\right){cos}\left(\frac{\pi}{{x}}\right)\:. \\ $$
Pg 1758 Pg 1759 Pg 1760 Pg 1761 Pg 1762 Pg 1763 Pg 1764 Pg 1765 Pg 1766 Pg 1767
Terms of Service
Privacy Policy
Contact: info@tinkutara.com