Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1763

Question Number 31671    Answers: 0   Comments: 0

let f diferensiabel on continues x=a and f(a)≠ 0 lim_(n→∞) [((f(a+(1/n)))/(f(a)))]^n value is ?

$$\mathrm{let}\:{f}\:\mathrm{diferensiabel}\:\mathrm{on}\:\mathrm{continues} \\ $$$${x}={a}\:\mathrm{and}\:{f}\left({a}\right)\neq\:\mathrm{0} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{{f}\left({a}+\frac{\mathrm{1}}{{n}}\right)}{{f}\left({a}\right)}\right]^{{n}} \\ $$$$\mathrm{value}\:\mathrm{is}\:? \\ $$

Question Number 31670    Answers: 1   Comments: 0

how many roots from equation ae^x =1+x+(x^2 /2) from a>0 ?

$$\mathrm{how}\:\mathrm{many}\:\mathrm{roots}\:\mathrm{from}\:\mathrm{equation} \\ $$$${ae}^{{x}} =\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${from}\:{a}>\mathrm{0}\:? \\ $$

Question Number 31669    Answers: 0   Comments: 0

A={(m/n)+((8n)/m) : m, n ∈ N} N= natural numbers supremum ? infimum?

$$\mathrm{A}=\left\{\frac{{m}}{{n}}+\frac{\mathrm{8}{n}}{{m}}\::\:{m},\:{n}\:\in\:\mathrm{N}\right\}\:\mathrm{N}=\:\mathrm{natural}\:\mathrm{numbers} \\ $$$$\mathrm{supremum}\:? \\ $$$$\mathrm{infimum}? \\ $$

Question Number 31666    Answers: 1   Comments: 0

ABCD is parallelogram in whic h AB =AD =10cm,BA^Λ D=60^° . calculate the area of parallelogr m.

$${ABCD}\:{is}\:{parallelogram}\:{in}\:{whic} \\ $$$${h}\:{AB}\:={AD}\:=\mathrm{10}{cm},{B}\overset{\Lambda} {{A}D}=\mathrm{60}^{°} . \\ $$$${calculate}\:{the}\:{area}\:{of}\:{parallelogr} \\ $$$${m}. \\ $$

Question Number 32371    Answers: 2   Comments: 1

−1⟨x⟨0 (√x^2 )−(√((x+(1/x))^2 −4))=−2x+(1/x) Why?

$$−\mathrm{1}\langle{x}\langle\mathrm{0} \\ $$$$\sqrt{{x}^{\mathrm{2}} }−\sqrt{\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} −\mathrm{4}}=−\mathrm{2}{x}+\frac{\mathrm{1}}{{x}} \\ $$$${Why}? \\ $$

Question Number 31648    Answers: 0   Comments: 0

Question Number 31642    Answers: 0   Comments: 1

∼ Equivalence relation (a∼b & c≁b)⇒c≁a True or false and why

$$\sim\:\mathrm{Equivalence}\:\mathrm{relation} \\ $$$$ \\ $$$$\left(\mathrm{a}\sim\mathrm{b}\:\&\:\mathrm{c}\nsim\mathrm{b}\right)\Rightarrow\mathrm{c}\nsim\mathrm{a} \\ $$$$\mathrm{True}\:\mathrm{or}\:\mathrm{false}\:\mathrm{and}\:\mathrm{why} \\ $$

Question Number 31639    Answers: 1   Comments: 0

Question Number 31628    Answers: 0   Comments: 5

Systems of particles doubt

$${Systems}\:{of}\:{particles}\:{doubt} \\ $$

Question Number 31626    Answers: 1   Comments: 0

Question Number 31620    Answers: 0   Comments: 0

Question Number 31619    Answers: 1   Comments: 0

Question Number 31611    Answers: 2   Comments: 1

Question Number 31596    Answers: 2   Comments: 2

Question Number 31595    Answers: 2   Comments: 2

Question Number 31594    Answers: 1   Comments: 0

Question Number 31591    Answers: 1   Comments: 4

Question Number 31584    Answers: 1   Comments: 0

Question Number 31583    Answers: 0   Comments: 0

how to read this ⟨x⟩. p

$${how}\:{to}\:{read}\:{this}\:\langle{x}\rangle.\:{p} \\ $$

Question Number 31579    Answers: 1   Comments: 0

Let a and b be an integer part and a decimal fraction of (√7), respectively. Then the integer part of (a/b) is?

$$\mathrm{Let}\:{a}\:\mathrm{and}\:{b}\:\mathrm{be}\:\mathrm{an}\:\mathrm{integer}\:\mathrm{part}\:\mathrm{and}\:\mathrm{a}\:\mathrm{decimal} \\ $$$$\mathrm{fraction}\:\mathrm{of}\:\sqrt{\mathrm{7}},\:\mathrm{respectively}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{integer} \\ $$$$\mathrm{part}\:\mathrm{of}\:\frac{{a}}{{b}}\:\mathrm{is}? \\ $$

Question Number 31573    Answers: 0   Comments: 1

Question Number 31572    Answers: 1   Comments: 0

Question Number 31571    Answers: 2   Comments: 0

Question Number 31569    Answers: 1   Comments: 0

(a,(1/a)),(b,(1/b)),(c,(1/c)),(d,(1/d)) are four distinct points on a circle of radius is 4 units then abcd is equal to ?

$$\left({a},\frac{\mathrm{1}}{{a}}\right),\left({b},\frac{\mathrm{1}}{{b}}\right),\left({c},\frac{\mathrm{1}}{{c}}\right),\left({d},\frac{\mathrm{1}}{{d}}\right)\:{are}\:{four} \\ $$$${distinct}\:{points}\:{on}\:{a}\:{circle}\:{of}\:{radius} \\ $$$${is}\:\mathrm{4}\:{units}\:{then}\:{abcd}\:{is}\:{equal}\:{to}\:? \\ $$

Question Number 31566    Answers: 1   Comments: 1

Question Number 31564    Answers: 0   Comments: 1

If f(x) and g(x) are two integrable functions defined on [a, b], then ∣ ∫_a ^b f(x) g(x) dx ∣ is

$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{and}\:\:{g}\left({x}\right)\:\mathrm{are}\:\mathrm{two}\:\mathrm{integrable} \\ $$$$\mathrm{functions}\:\mathrm{defined}\:\mathrm{on}\:\left[{a},\:{b}\right],\:\mathrm{then} \\ $$$$\mid\:\underset{{a}} {\overset{{b}} {\int}}\:{f}\left({x}\right)\:{g}\left({x}\right)\:{dx}\:\mid\:\:\:\mathrm{is} \\ $$

  Pg 1758      Pg 1759      Pg 1760      Pg 1761      Pg 1762      Pg 1763      Pg 1764      Pg 1765      Pg 1766      Pg 1767   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com