Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1758

Question Number 30615    Answers: 1   Comments: 0

Question Number 30614    Answers: 1   Comments: 0

Consider that two cars are accelerating along the same road and if the distance between them was observed to be increasing,what deduction can you make as regards the acceleration? a)it implies that the trailing car has the smaller acceleration b)it implies that the two cars are accelerating at the same rate c)it implies nothing about the acceleration d)it implies that the leading car has the greater acceleration.

$${Consider}\:{that}\:{two}\:{cars}\:{are}\: \\ $$$${accelerating}\:{along}\:{the}\:{same}\:{road} \\ $$$${and}\:{if}\:{the}\:{distance}\:{between}\:{them} \\ $$$${was}\:{observed}\:{to}\:{be}\:{increasing},{what} \\ $$$${deduction}\:{can}\:{you}\:{make}\:{as}\:{regards} \\ $$$${the}\:{acceleration}? \\ $$$$\left.{a}\right){it}\:{implies}\:{that}\:{the}\:{trailing}\:{car} \\ $$$${has}\:{the}\:{smaller}\:{acceleration} \\ $$$$\left.{b}\right){it}\:{implies}\:{that}\:{the}\:{two}\:{cars}\:{are} \\ $$$${accelerating}\:{at}\:{the}\:{same}\:{rate} \\ $$$$\left.{c}\right){it}\:{implies}\:{nothing}\:{about}\:{the} \\ $$$${acceleration} \\ $$$$\left.{d}\right){it}\:{implies}\:{that}\:{the}\:{leading}\:{car}\: \\ $$$${has}\:{the}\:{greater}\:{acceleration}. \\ $$

Question Number 30613    Answers: 1   Comments: 1

A car negotiates a bend of radius 20m with an acceleration of 12m/s^2 .What is the maximum speed the car can attain without skidding?

$${A}\:{car}\:{negotiates}\:{a}\:{bend}\:{of}\:{radius} \\ $$$$\mathrm{20}{m}\:{with}\:{an}\:{acceleration}\:{of}\: \\ $$$$\mathrm{12}{m}/{s}^{\mathrm{2}} .{What}\:{is}\:{the}\:{maximum} \\ $$$${speed}\:{the}\:{car}\:{can}\:{attain}\:{without} \\ $$$${skidding}? \\ $$

Question Number 30612    Answers: 0   Comments: 0

A car negotiates a bend of radius 20m with an acceleration of 12m/s^2 .What is the maximum speed the car can attain without skidding?

$${A}\:{car}\:{negotiates}\:{a}\:{bend}\:{of}\:{radius} \\ $$$$\mathrm{20}{m}\:{with}\:{an}\:{acceleration}\:{of}\: \\ $$$$\mathrm{12}{m}/{s}^{\mathrm{2}} .{What}\:{is}\:{the}\:{maximum} \\ $$$${speed}\:{the}\:{car}\:{can}\:{attain}\:{without} \\ $$$${skidding}? \\ $$

Question Number 30601    Answers: 0   Comments: 1

for 0<r≤1 and (θ,x)∈R^2 find S=Σ_(n=0) ^∞ r^n cos(nθ).

$${for}\:\mathrm{0}<{r}\leqslant\mathrm{1}\:{and}\:\left(\theta,{x}\right)\in{R}^{\mathrm{2}} \:\:{find} \\ $$$${S}=\sum_{{n}=\mathrm{0}} ^{\infty} \:{r}^{{n}} {cos}\left({n}\theta\right). \\ $$

Question Number 30600    Answers: 0   Comments: 0

let w_k =e^(i((2kπ)/n)) find A= Π_(k=0) ^(n−1) (a +bw_k ).

$${let}\:{w}_{{k}} ={e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \:\:\:\:{find}\:{A}=\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({a}\:+{bw}_{{k}} \:\right). \\ $$

Question Number 30599    Answers: 0   Comments: 1

decompose inside C(x) F= (1/((x−1)(x^n −1))) .

$${decompose}\:{inside}\:{C}\left({x}\right)\:\:{F}=\:\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}^{{n}} \:−\mathrm{1}\right)}\:. \\ $$

Question Number 30598    Answers: 0   Comments: 1

prove that it exist one polynomial p/ p(cosx)=cos(nx) find the roots of p(x) .

$${prove}\:{that}\:{it}\:{exist}\:{one}\:{polynomial}\:{p}/ \\ $$$${p}\left({cosx}\right)={cos}\left({nx}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:. \\ $$

Question Number 30597    Answers: 0   Comments: 0

let p(x)=(1+x)^m −e^(2imx) (1−x)^m factorize p(x) inside C[x].

$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{x}\right)^{{m}} \:−{e}^{\mathrm{2}{imx}} \left(\mathrm{1}−{x}\right)^{{m}} \:{factorize}\:{p}\left({x}\right) \\ $$$${inside}\:{C}\left[{x}\right]. \\ $$

Question Number 30596    Answers: 0   Comments: 0

find all polynomial wich verify p(x^2 ) +p(x)p(x+1)=0.

$${find}\:{all}\:{polynomial}\:{wich}\:{verify}\: \\ $$$${p}\left({x}^{\mathrm{2}} \right)\:+{p}\left({x}\right){p}\left({x}+\mathrm{1}\right)=\mathrm{0}. \\ $$

Question Number 30595    Answers: 0   Comments: 1

let f(x)= (1/(x^2 −2cosαx+1)) find f^((n)) .

$${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:−\mathrm{2}{cos}\alpha{x}+\mathrm{1}}\:\:{find}\:{f}^{\left({n}\right)} . \\ $$

Question Number 30594    Answers: 0   Comments: 0

let p(x)=x^3 +1 and q(x)=x^4 +1 prove that D(p,q)=1.

$${let}\:{p}\left({x}\right)={x}^{\mathrm{3}} \:+\mathrm{1}\:{and}\:{q}\left({x}\right)={x}^{\mathrm{4}} \:+\mathrm{1}\:{prove}\:{that} \\ $$$${D}\left({p},{q}\right)=\mathrm{1}. \\ $$

Question Number 30593    Answers: 1   Comments: 0

factorize inside C[x] p(x)=(1+i(x/n))^n −(1−i(x/n))^n .

$${factorize}\:{inside}\:{C}\left[{x}\right]\:{p}\left({x}\right)=\left(\mathrm{1}+{i}\frac{{x}}{{n}}\right)^{{n}} \:−\left(\mathrm{1}−{i}\frac{{x}}{{n}}\right)^{{n}} . \\ $$

Question Number 30592    Answers: 1   Comments: 0

let p(x)=x^(2n) −2cosα x^n +1 1) find roots lf p(x) 2)factorize p(x) inside C[x] 3)factorize p(x) inside R[x].

$${let}\:{p}\left({x}\right)={x}^{\mathrm{2}{n}} \:−\mathrm{2}{cos}\alpha\:{x}^{{n}} \:+\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{roots}\:{lf}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){factorize}\:{p}\left({x}\right)\:{inside}\:{R}\left[{x}\right]. \\ $$

Question Number 30590    Answers: 1   Comments: 0

decompose sur R[x] x^(2n+1) −1.

$${decompose}\:{sur}\:{R}\left[{x}\right]\:\:{x}^{\mathrm{2}{n}+\mathrm{1}} \:−\mathrm{1}. \\ $$

Question Number 30589    Answers: 0   Comments: 0

let U_n = {z∈C / z^n =1} find S= Σ_(z∈U_n ) (z/((x−z)^2 )) .

$${let}\:{U}_{{n}} =\:\left\{{z}\in{C}\:/\:{z}^{{n}} =\mathrm{1}\right\}\:\:{find} \\ $$$${S}=\:\sum_{{z}\in{U}_{{n}} } \:\:\frac{{z}}{\left({x}−{z}\right)^{\mathrm{2}} }\:\:. \\ $$

Question Number 30588    Answers: 0   Comments: 0

(n_k )_(1≤k≤n) is a family of integrs numbers let put p(x)=Σ_(k=1) ^n x^n_k and q(x)= Σ_(j=0) ^(n−1) x^j if n_k ≡k−1[n] prove that q divide p.

$$\left({n}_{{k}} \right)_{\mathrm{1}\leqslant{k}\leqslant{n}} \:{is}\:{a}\:{family}\:{of}\:{integrs}\:{numbers}\:{let}\:{put} \\ $$$${p}\left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:{x}^{{n}_{{k}} } \:\:\:{and}\:{q}\left({x}\right)=\:\sum_{{j}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{x}^{{j}} \: \\ $$$${if}\:{n}_{{k}} \equiv{k}−\mathrm{1}\left[{n}\right]\:{prove}\:{that}\:{q}\:{divide}\:{p}. \\ $$

Question Number 30587    Answers: 0   Comments: 0

find Σ_(k=0) ^(n−1) (−1)^k cos^n (((kπ)/n)).

$${find}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left(−\mathrm{1}\right)^{{k}} \:{cos}^{{n}} \left(\frac{{k}\pi}{{n}}\right). \\ $$

Question Number 30586    Answers: 0   Comments: 0

let p=1+x+x^2 +....+x^(2^(n+1) −1) and q= 1+x^2^n find α= (p/q) .

$${let}\:{p}=\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+....+{x}^{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}} \:{and}\:\:{q}=\:\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \\ $$$${find}\:\alpha=\:\frac{{p}}{{q}}\:. \\ $$

Question Number 30585    Answers: 0   Comments: 0

find F_n (x)= ∫_0 ^∞ (x^n /(e^(x+n) +1))dx .

$${find}\:\:{F}_{{n}} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{{n}} }{{e}^{{x}+{n}} \:+\mathrm{1}}{dx}\:. \\ $$

Question Number 30584    Answers: 0   Comments: 0

find I= ∫_(−∞) ^(+∞) (e^(−x^2 ) /(a^2 +(v−x)^2 ))dx.

$${find}\:\:{I}=\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{e}^{−{x}^{\mathrm{2}} } }{{a}^{\mathrm{2}} \:+\left({v}−{x}\right)^{\mathrm{2}} }{dx}. \\ $$

Question Number 30583    Answers: 0   Comments: 0

decompose F =(1/((x^2 −1)^n )) inside C[x].n from N.

$${decompose}\:{F}\:=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{{n}} }\:{inside}\:{C}\left[{x}\right].{n}\:{from}\:{N}. \\ $$

Question Number 30582    Answers: 0   Comments: 0

x_1 , x_2 , x_(3 ) are roots of the polynomial x^3 −x+1 find the polynomial wich have for roots x_1 ^3 ,x_2 ^3 and x_3 ^3 .

$${x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:{x}_{\mathrm{3}\:} \:{are}\:{roots}\:{of}\:{the}\:{polynomial}\:{x}^{\mathrm{3}} \:−{x}+\mathrm{1}\:{find} \\ $$$${the}\:{polynomial}\:{wich}\:{have}\:{for}\:{roots}\:{x}_{\mathrm{1}} ^{\mathrm{3}} \:,{x}_{\mathrm{2}} ^{\mathrm{3}} \:{and}\:{x}_{\mathrm{3}} ^{\mathrm{3}} \:\:. \\ $$

Question Number 30581    Answers: 0   Comments: 0

decompose inside C[x] F= (1/((x+iy)^n )) .

$${decompose}\:{inside}\:{C}\left[{x}\right]\:{F}=\:\:\frac{\mathrm{1}}{\left({x}+{iy}\right)^{{n}} }\:. \\ $$

Question Number 30580    Answers: 0   Comments: 1

decompose inside C[x] F= (x^n /(x^m +1)) with m≥n+2 then find ∫_0 ^∞ (x^n /(x^m +1))dx.

$${decompose}\:{inside}\:{C}\left[{x}\right]\:{F}=\:\frac{{x}^{{n}} }{{x}^{{m}} \:+\mathrm{1}}\:{with}\:{m}\geqslant{n}+\mathrm{2} \\ $$$${then}\:{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{{x}^{{m}} \:+\mathrm{1}}{dx}. \\ $$

Question Number 30579    Answers: 0   Comments: 0

decompose inside C[x] F= ((x^n −1)/(x^(2n) −1)) .

$${decompose}\:{inside}\:{C}\left[{x}\right]\:{F}=\:\frac{{x}^{{n}} −\mathrm{1}}{{x}^{\mathrm{2}{n}} −\mathrm{1}}\:. \\ $$

  Pg 1753      Pg 1754      Pg 1755      Pg 1756      Pg 1757      Pg 1758      Pg 1759      Pg 1760      Pg 1761      Pg 1762   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com