Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1757

Question Number 27878    Answers: 0   Comments: 1

Question Number 27870    Answers: 1   Comments: 1

Question Number 27850    Answers: 1   Comments: 0

Question Number 27847    Answers: 1   Comments: 1

Find the range of f(x)=((x+5)/(x^2 −4))

$${Find}\:{the}\:{range}\:{of}\:{f}\left({x}\right)=\frac{{x}+\mathrm{5}}{{x}^{\mathrm{2}} −\mathrm{4}} \\ $$

Question Number 27844    Answers: 0   Comments: 1

For αεR, cosαcosx+siny≥sinx, then find the sum of the possible values of sinα+siny.

$${For}\:\alpha\epsilon{R},\:{cos}\alpha{cosx}+{siny}\geqslant{sinx},\:{then} \\ $$$${find}\:{the}\:{sum}\:{of}\:{the}\:{possible}\:{values}\:{of} \\ $$$${sin}\alpha+{siny}. \\ $$

Question Number 27843    Answers: 0   Comments: 1

sinx+sin3x+sin(√x)=0, then find the general solution?

$${sinx}+{sin}\mathrm{3}{x}+{sin}\sqrt{{x}}=\mathrm{0},\:{then}\:{find}\:{the}\: \\ $$$${general}\:{solution}? \\ $$

Question Number 27840    Answers: 1   Comments: 0

If xcosθ=ycos(θ+((2π)/3))=zcos(θ+((4π)/3)),then the value of xy+yz+zx.

$${If}\:{xcos}\theta={ycos}\left(\theta+\frac{\mathrm{2}\pi}{\mathrm{3}}\right)={zcos}\left(\theta+\frac{\mathrm{4}\pi}{\mathrm{3}}\right),{then} \\ $$$${the}\:{value}\:{of}\:{xy}+{yz}+{zx}. \\ $$

Question Number 27853    Answers: 0   Comments: 1

Question Number 27851    Answers: 0   Comments: 2

Question Number 27830    Answers: 0   Comments: 1

lim_(x→∝) (x−lnx)

$$\underset{{x}\rightarrow\propto} {\mathrm{lim}}\:\left({x}−\mathrm{ln}{x}\right) \\ $$

Question Number 27828    Answers: 1   Comments: 2

find the value of ∫_0 ^(π/2) (√(tanx))dx .

$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{tanx}}{dx}\:. \\ $$

Question Number 27821    Answers: 1   Comments: 0

If α and β satisfy sinαcosβ= −(1/2) then the greatest value of 2cosαsinβ

$${If}\:\alpha\:{and}\:\beta\:{satisfy}\:{sin}\alpha{cos}\beta=\:−\frac{\mathrm{1}}{\mathrm{2}}\:{then} \\ $$$${the}\:{greatest}\:{value}\:{of}\:\mathrm{2}{cos}\alpha{sin}\beta \\ $$

Question Number 27820    Answers: 1   Comments: 0

If A,Bε(0,(π/2)) such that 3sin^2 A+2sin^2 B=1 and 3sin2A−2sin2B=0, find the value of A+B.

$${If}\:{A},{B}\epsilon\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\:{such}\:{that}\:\mathrm{3}{sin}^{\mathrm{2}} {A}+\mathrm{2}{sin}^{\mathrm{2}} {B}=\mathrm{1} \\ $$$${and}\:\mathrm{3}{sin}\mathrm{2}{A}−\mathrm{2}{sin}\mathrm{2}{B}=\mathrm{0},\:{find}\:{the}\:{value}\:{of}\:{A}+{B}. \\ $$

Question Number 27818    Answers: 0   Comments: 7

Question Number 27816    Answers: 1   Comments: 1

If N is perfect nth power, prove that n ∣ (d(N)−1) [Where d(N) denotes number of divisors of N] Also show by an example that its vice versa is not necessarily correct.

$$\mathrm{If}\:\mathrm{N}\:\mathrm{is}\:\boldsymbol{\mathrm{perfect}}\:\boldsymbol{\mathrm{nth}}\:\boldsymbol{\mathrm{power}},\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\mathrm{n}\:\mid\:\left(\mathrm{d}\left(\mathrm{N}\right)−\mathrm{1}\right)\: \\ $$$$\left[{Where}\:\mathrm{d}\left(\mathrm{N}\right)\:{denotes}\:\boldsymbol{{number}}\right. \\ $$$$\left.\boldsymbol{{of}}\:\boldsymbol{{divisors}}\:\boldsymbol{{of}}\:\mathrm{N}\right] \\ $$$$\mathrm{Also}\:\mathrm{show}\:\mathrm{by}\:\mathrm{an}\:\mathrm{example}\:\mathrm{that}\:\mathrm{its} \\ $$$$\mathrm{vice}\:\mathrm{versa}\:\mathrm{is}\:\mathrm{not}\:\mathrm{necessarily}\:\mathrm{correct}. \\ $$

Question Number 27815    Answers: 1   Comments: 0

∫((cos x−cos 2x)/(1−cos x))dx

$$\int\frac{\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\mathrm{2x}}{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}\mathrm{dx} \\ $$

Question Number 27809    Answers: 2   Comments: 0

(1) Find the term independent of x in the expansion of (x−(2/x))^(10)

$$\left(\mathrm{1}\right)\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{term}}\:\boldsymbol{\mathrm{independent}} \\ $$$$\boldsymbol{\mathrm{of}}\:\:\:\boldsymbol{\mathrm{x}}\:\:\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{expansion}}\:\boldsymbol{\mathrm{of}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{x}}−\frac{\mathrm{2}}{\boldsymbol{\mathrm{x}}}\right)^{\mathrm{10}} \\ $$

Question Number 27805    Answers: 0   Comments: 1

find ∫_1 ^∝ ((arctan(αx))/x^2 ) .

$${find}\:\:\int_{\mathrm{1}} ^{\propto} \:\:\frac{{arctan}\left(\alpha{x}\right)}{{x}^{\mathrm{2}} }\:. \\ $$

Question Number 27804    Answers: 0   Comments: 1

calculate ∫_0 ^∝ ((e^(−ax) − e^(−bx) )/x^2 )dx with a>0 b>o

$${calculate}\:\:\int_{\mathrm{0}} ^{\propto} \:\:\frac{{e}^{−{ax}} \:−\:{e}^{−{bx}} }{{x}^{\mathrm{2}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$${b}>{o} \\ $$

Question Number 27803    Answers: 0   Comments: 0

find the value of ∫_0 ^1 ((arctan(x +x^(−1) ))/(1+x^2 )) dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left({x}\:+{x}^{−\mathrm{1}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$

Question Number 27802    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ (e^(−2x^2 ) /((3+x^2 )^2 ))dx .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{2}{x}^{\mathrm{2}} } }{\left(\mathrm{3}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 27801    Answers: 0   Comments: 1

solve the d.e. y^′ −2xy =sinx e^x^2 with initial condition y(o)=1.

$${solve}\:{the}\:{d}.{e}.\:\:{y}^{'} \:−\mathrm{2}{xy}\:={sinx}\:{e}^{{x}^{\mathrm{2}} } \:{with}\:{initial}\:{condition} \\ $$$${y}\left({o}\right)=\mathrm{1}. \\ $$

Question Number 27912    Answers: 0   Comments: 2

find the sum of Σ_(n=1) ^∝ (1/n)( ((√2)/(1+i)))^n .

$${find}\:{the}\:{sum}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\mathrm{1}}{{n}}\left(\:\:\frac{\sqrt{\mathrm{2}}}{\mathrm{1}+{i}}\right)^{{n}} . \\ $$

Question Number 27797    Answers: 0   Comments: 1

find ∫ (√(2+tan^2 t)) dt.

$${find}\:\:\:\int\:\sqrt{\mathrm{2}+{tan}^{\mathrm{2}} {t}}\:\:{dt}. \\ $$

Question Number 27796    Answers: 0   Comments: 0

find ∫ (x^2 /((cosx +x sinx)^2 )) .

$${find}\:\:\int\:\:\:\frac{{x}^{\mathrm{2}} }{\left({cosx}\:+{x}\:{sinx}\right)^{\mathrm{2}} }\:\:. \\ $$

Question Number 27794    Answers: 0   Comments: 0

let give I(x)= ∫_0 ^π ln (1−2x cost +x^2 )dt by using the polynomial p(x)= (z+x)^(2n) −1 find the value of I(x).

$${let}\:{give}\:\:{I}\left({x}\right)=\:\int_{\mathrm{0}} ^{\pi} {ln}\:\left(\mathrm{1}−\mathrm{2}{x}\:{cost}\:+{x}^{\mathrm{2}} \right){dt}\:{by}\:{using}\:{the} \\ $$$${polynomial}\:{p}\left({x}\right)=\:\left({z}+{x}\right)^{\mathrm{2}{n}} −\mathrm{1}\:\:{find}\:{the}\:{value}\:{of}\:{I}\left({x}\right). \\ $$

  Pg 1752      Pg 1753      Pg 1754      Pg 1755      Pg 1756      Pg 1757      Pg 1758      Pg 1759      Pg 1760      Pg 1761   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com