Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1757
Question Number 33232 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}\:{sin}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:. \\ $$
Question Number 33200 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{2}^{\mathrm{3n}+\mathrm{2}} \:−\mathrm{7}×\mathrm{2}^{\mathrm{2n}+\mathrm{2}} \:−\mathrm{31}×\mathrm{2}^{\mathrm{n}} \:−\mathrm{8}=\mathrm{0},\:\mathrm{n}\in\boldsymbol{\mathrm{R}}. \\ $$$$\mathrm{I}\:\mathrm{need}\:\mathrm{some}\:\mathrm{help}\:\mathrm{with}\:\mathrm{this} \\ $$
Question Number 33199 Answers: 0 Comments: 1
Question Number 33195 Answers: 0 Comments: 0
Question Number 33193 Answers: 1 Comments: 0
$$\mathrm{Q}.\:\:\mathrm{If}\:\alpha\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{1}=\mathrm{0}, \\ $$$$\:\:\:\:\:\:\:\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{other}\:\mathrm{roots}\:\mathrm{are} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2}−\alpha^{\mathrm{2}} \:\mathrm{and}\:\alpha^{\mathrm{2}} −\alpha−\mathrm{2}. \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Please}\:\mathrm{help}. \\ $$
Question Number 33186 Answers: 1 Comments: 0
$${Find}\:{the}\:{exact}\:{value}\:{of}\:{sin}\theta\:{if} \\ $$$${cos}\theta=\frac{\mathrm{1}}{\mathrm{57}}\:{and}\:\theta\:{is}\:{obtuse} \\ $$
Question Number 33185 Answers: 1 Comments: 0
$${find}\:{k}\:{if} \\ $$$$\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{2}{k}\right)\left(\mathrm{2}\right)^{{n}−\mathrm{1}} =\mathrm{64} \\ $$$${hence}\:{find}\:{k}\:{if}\:\:{kx}^{\mathrm{2}} +\mathrm{3}{x}\:+\mathrm{4}=\mathrm{0}\:{has} \\ $$$${real}\:{roots}. \\ $$
Question Number 33184 Answers: 0 Comments: 0
$${describe}\:{geometrically}\:{the}\:{matrice} \\ $$$$\:\:\:\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:−\mathrm{1}}\end{pmatrix} \\ $$
Question Number 33202 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}\:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:. \\ $$
Question Number 33175 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$
Question Number 33174 Answers: 0 Comments: 0
$${let}\:\left({a},{b}\right)\in{N}^{\mathrm{2}} \:{and}\:{p}_{{n}} \left({x}\right)=\:\frac{{x}^{{n}} }{{n}!}\left({bx}−{a}\right)^{{n}} \\ $$$${give}\:{the}\:{taylor}\:{formula}\:{for}\:{p}_{{n}\:} \:{at}\:{x}=\mathrm{0}\:. \\ $$
Question Number 33173 Answers: 0 Comments: 0
$${let}\:\:{give}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{3}} }\:{developp}\:{f}\:\:{at}\:{integr}\:{serie}. \\ $$$$ \\ $$
Question Number 33172 Answers: 0 Comments: 0
$${find}\:\:\int\:\:\:\:\frac{{dx}}{{x}\:+\sqrt{{x}^{\mathrm{2}} \:−\mathrm{3}{x}+\mathrm{2}}}\:. \\ $$
Question Number 33171 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{{t}} }\:\:.{calculate}\:{f}^{'} \left({x}\right)\:{interms}\:{of}\:{cht} \\ $$
Question Number 33170 Answers: 0 Comments: 1
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mid{sinx}\mid}{{x}}\:{dx}\:{is}\:{divergent}. \\ $$
Question Number 33169 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}\:{sin}^{\mathrm{2}} {x}}\:\:. \\ $$
Question Number 33168 Answers: 0 Comments: 1
$${find}\:{lim}_{{n}\rightarrow\infty} \:\:\:\int_{{n}} ^{{n}+\mathrm{1}} \:\:\:\frac{\left({t}+{n}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }{\sqrt{{t}}}\:{dt}\:. \\ $$
Question Number 33167 Answers: 0 Comments: 1
$${f}\:{is}\:{a}\:{continue}\:{and}\:{positive}\:{function}\:{on}\:\left[{a},{b}\right]\:{with}\:{a}<{b} \\ $$$${let}\:{m}\:={max}_{{x}\in\left[{a},{b}\right]} \:{f}\left({x}\right)\:{prove}\:{that} \\ $$$${lim}_{{n}\rightarrow\infty} \:\:\left(\:\frac{\mathrm{1}}{{b}−{a}}\:\int_{{a}} ^{{b}} \:{f}^{{n}} \left({x}\right){dx}\right)^{\frac{\mathrm{1}}{{n}}} \\ $$
Question Number 33166 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }\:\:. \\ $$
Question Number 33159 Answers: 0 Comments: 0
$${if}\:{y}=\:\mathrm{3}{x}^{\mathrm{4}} \:{find}\:{the}\:{percentage}\:{increase}\:{in}\:{y} \\ $$$${if}\:{x}\:{increases}\:{at}\:\frac{\mathrm{5}}{\mathrm{2}}\%\:{or}\:\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}}\overset{} {\%} \\ $$$${use}\:{the}\:{Binomial}\:{Expansion}\:{method} \\ $$$$\left({that}\:{is}\:{find}\:{new}\:{y}\:{and}\:{new}\:{x}\:{and}\:{simplify}\right) \\ $$
Question Number 33158 Answers: 0 Comments: 2
$${the}\:{matrice}\:{which}\:{comes}\:{from} \\ $$$${the}\:{transformation}\:{matrix}\: \\ $$$$\:\begin{pmatrix}{{cos}\theta\:\:\:\:\:\:\:\:\:−{sin}\theta}\\{{sin}\:\theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:{cos}\theta}\end{pmatrix} \\ $$$${at}\:\mathrm{90}°\:{is}? \\ $$
Question Number 33157 Answers: 0 Comments: 1
$${find}\:{k}\:{if} \\ $$$${kloga}=\:{loga}\:+\:{log}\:{a}^{\mathrm{2}} +\:{log}\:{a}^{\mathrm{3}\:} +\:{log}\:{a}^{\mathrm{4}} \\ $$
Question Number 33155 Answers: 0 Comments: 4
$$\mathrm{Evaluate} \\ $$$$\int_{−\infty} ^{\infty} \:\mathrm{3}{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} \:+\:\mathrm{1}\right)^{\mathrm{2}} \:{e}^{−{x}^{\mathrm{6}} \:−\:\mathrm{2}{x}^{\mathrm{3}} } \:{dx} \\ $$
Question Number 33154 Answers: 0 Comments: 1
$${it}\:{is}\:{given}\:{that}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\:{U}_{{n}} =\:\frac{\mathrm{1}+\mathrm{3}^{\mathrm{2}{n}+\mathrm{2}} −\mathrm{2}×\mathrm{5}^{{n}+\mathrm{1}} }{\mathrm{8}} \\ $$$${where}\:{U}_{{n}} \:{is}\:{the}\:{n}^{{th}} \:{term}\:{of}\:{a}\:{sequence} \\ $$$${find}\:{the}\:{simplified}\:{expression}\:{for}\:{U}_{{n}} \\ $$
Question Number 33151 Answers: 0 Comments: 0
Question Number 33147 Answers: 2 Comments: 1
$$\mathrm{If}\:\:\:{x}^{{m}} \:\:\mathrm{occurs}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\left({x}\:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}{n}} ,\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{{m}} \:\mathrm{is} \\ $$
Pg 1752 Pg 1753 Pg 1754 Pg 1755 Pg 1756 Pg 1757 Pg 1758 Pg 1759 Pg 1760 Pg 1761
Terms of Service
Privacy Policy
Contact: info@tinkutara.com