Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1756

Question Number 25468    Answers: 0   Comments: 0

Question Number 25460    Answers: 1   Comments: 2

Question Number 25457    Answers: 1   Comments: 0

Question Number 26949    Answers: 0   Comments: 2

∫_0 ^1 ∫_0 ^1 (1/(1 + xy)) dx dy

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{1}}{\mathrm{1}\:+\:{xy}}\:{dx}\:{dy} \\ $$

Question Number 25447    Answers: 0   Comments: 1

Question Number 25446    Answers: 0   Comments: 0

Question Number 25444    Answers: 1   Comments: 8

Question Number 25441    Answers: 1   Comments: 0

in what ratio in which y−x+2=0 divides the line joining (3,−1) and (8,9).

$${in}\:{what}\:{ratio}\:{in}\:{which}\:{y}−{x}+\mathrm{2}=\mathrm{0}\:{divides}\:{the}\:{line}\:{joining}\:\left(\mathrm{3},−\mathrm{1}\right)\:{and}\:\left(\mathrm{8},\mathrm{9}\right). \\ $$$$ \\ $$

Question Number 25425    Answers: 0   Comments: 0

Sum of series 1 + 2x + 7x^2 + 20x^3 + ... up to n terms when x = −1 is

$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{series}\:\mathrm{1}\:+\:\mathrm{2}{x}\:+\:\mathrm{7}{x}^{\mathrm{2}} \:+\:\mathrm{20}{x}^{\mathrm{3}} \:+\:... \\ $$$$\mathrm{up}\:\mathrm{to}\:{n}\:\mathrm{terms}\:\mathrm{when}\:{x}\:=\:−\mathrm{1}\:\mathrm{is} \\ $$

Question Number 25462    Answers: 1   Comments: 0

Let S_n , n = 1, 2, 3... be the sum of infinite geometric series whose first term is n and the common ratio is (1/(n + 1)). Then lim_(n→∞) ((S_1 S_n + S_2 S_(n−1) + S_3 S_(n−2) ... + S_n S_1 )/(S_1 ^2 + S_2 ^2 + ... + S_n ^2 )) is

$$\mathrm{Let}\:{S}_{{n}} ,\:{n}\:=\:\mathrm{1},\:\mathrm{2},\:\mathrm{3}...\:\mathrm{be}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{infinite}\:\mathrm{geometric}\:\mathrm{series}\:\mathrm{whose}\:\mathrm{first} \\ $$$$\mathrm{term}\:\mathrm{is}\:{n}\:\mathrm{and}\:\mathrm{the}\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{is} \\ $$$$\frac{\mathrm{1}}{{n}\:+\:\mathrm{1}}.\:\mathrm{Then} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{S}_{\mathrm{1}} {S}_{{n}} \:+\:{S}_{\mathrm{2}} {S}_{{n}−\mathrm{1}} \:+\:{S}_{\mathrm{3}} {S}_{{n}−\mathrm{2}} \:...\:+\:{S}_{{n}} {S}_{\mathrm{1}} }{{S}_{\mathrm{1}} ^{\mathrm{2}} \:+\:{S}_{\mathrm{2}} ^{\mathrm{2}} \:+\:...\:+\:{S}_{{n}} ^{\mathrm{2}} } \\ $$$$\mathrm{is} \\ $$

Question Number 25414    Answers: 1   Comments: 0

if 10^(10 ) electrons are removed neutral bodyb body the charge acquired by the body is? ?

$${if}\:\mathrm{10}^{\mathrm{10}\:} {electrons}\:{are}\:{removed}\:{neutral}\:{bodyb} \\ $$$${body}\:{the}\:{charge}\:{acquired}\:{by}\:{the}\:{body}\:{is}? \\ $$$$? \\ $$$$ \\ $$

Question Number 25410    Answers: 0   Comments: 0

Question Number 25407    Answers: 0   Comments: 4

Please can I get any link for downloading RD SHARMA class XI mathematics textbook. Thanks.

$${Please}\:{can}\:{I}\:{get}\:{any}\:{link}\:{for} \\ $$$${downloading}\:{RD}\:{SHARMA}\:{class} \\ $$$${XI}\:{mathematics}\:{textbook}. \\ $$$$ \\ $$$${Thanks}. \\ $$

Question Number 25397    Answers: 0   Comments: 2

Let y = f (x) f (0) = 5 f ′(x) = −3x + 2 ∫_0 ^2 f (x) dx Find the maximum value of y = f(x) .

$${Let}\:\:{y}\:\:=\:\:{f}\:\left({x}\right) \\ $$$$\:\:\:\:{f}\:\left(\mathrm{0}\right)\:\:=\:\:\mathrm{5} \\ $$$${f}\:'\left({x}\right)\:\:=\:\:−\mathrm{3}{x}\:+\:\mathrm{2}\:\underset{\mathrm{0}} {\int}\overset{\mathrm{2}} {\:}{f}\:\left({x}\right)\:{dx} \\ $$$${Find}\:\:{the}\:\:{maximum}\:\:{value}\:\:{of}\:\:\:\boldsymbol{{y}}\:\:=\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:. \\ $$$$ \\ $$

Question Number 25431    Answers: 0   Comments: 6

App has been updated. • You can now post plain text comments including hyperlinks • chemistry and physics topics added for posting question • New symbols added please update to latest version 1.56.

$$\mathrm{App}\:\mathrm{has}\:\mathrm{been}\:\mathrm{updated}. \\ $$$$\bullet\:\mathrm{You}\:\mathrm{can}\:\mathrm{now}\:\mathrm{post}\:\mathrm{plain}\:\mathrm{text} \\ $$$$\:\:\:\:\mathrm{comments}\:\mathrm{including}\:\mathrm{hyperlinks} \\ $$$$\bullet\:\mathrm{chemistry}\:\mathrm{and}\:\mathrm{physics}\:\mathrm{topics} \\ $$$$\:\:\:\mathrm{added}\:\mathrm{for}\:\mathrm{posting}\:\mathrm{question} \\ $$$$\bullet\:\mathrm{New}\:\mathrm{symbols}\:\mathrm{added} \\ $$$$\mathrm{please}\:\mathrm{update}\:\mathrm{to}\:\mathrm{latest}\:\mathrm{version}\:\mathrm{1}.\mathrm{56}. \\ $$

Question Number 25480    Answers: 0   Comments: 0

Question Number 25780    Answers: 1   Comments: 0

every periodic function is differentiable.true or false justify

$${every}\:{periodic}\:{function}\:{is}\: \\ $$$${differentiable}.{true}\:{or}\:{false}\:{justify} \\ $$

Question Number 25390    Answers: 1   Comments: 0

sin 90

$$\mathrm{sin}\:\mathrm{90} \\ $$

Question Number 25387    Answers: 1   Comments: 0

∫((12x)/((2−x)(3−x)(4−x)))dx

$$\int\frac{\mathrm{12}{x}}{\left(\mathrm{2}−{x}\right)\left(\mathrm{3}−{x}\right)\left(\mathrm{4}−{x}\right)}{dx} \\ $$$$ \\ $$

Question Number 25381    Answers: 1   Comments: 0

The first term of a sequence is 1, the second is 2 and every term is the sum of the two preceding terms. The n^(th) term is.

$$\mathrm{The}\:\mathrm{first}\:\mathrm{term}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{1},\:\mathrm{the} \\ $$$$\mathrm{second}\:\mathrm{is}\:\mathrm{2}\:\mathrm{and}\:\mathrm{every}\:\mathrm{term}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{preceding}\:\mathrm{terms}.\:\mathrm{The}\:{n}^{\mathrm{th}} \:\mathrm{term} \\ $$$$\mathrm{is}. \\ $$

Question Number 25379    Answers: 2   Comments: 0

lim_(x → 0) ((((1 + x)^a − 1)/x)) for a ∈ R Don′t using L′hospital rules.

$$\underset{\mathrm{x}\:\rightarrow\:\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\left(\mathrm{1}\:+\:\mathrm{x}\right)^{\mathrm{a}} \:−\:\mathrm{1}}{\mathrm{x}}\right)\:\mathrm{for}\:\mathrm{a}\:\in\:\mathbb{R} \\ $$$$ \\ $$$$\mathrm{Don}'\mathrm{t}\:\mathrm{using}\:\mathrm{L}'\mathrm{hospital}\:\mathrm{rules}. \\ $$

Question Number 25378    Answers: 1   Comments: 0

If log x, log y, log z (x,y,z > 1) are in GP then 2x+log(bx), 3x+log(by), 4x+log(bz) are in A.P. True/False?

$${If}\:\mathrm{log}\:{x},\:\mathrm{log}\:{y},\:\mathrm{log}\:{z}\:\left({x},{y},{z}\:>\:\mathrm{1}\right)\:{are}\:{in} \\ $$$${GP}\:{then}\:\mathrm{2}{x}+\mathrm{log}\left({bx}\right),\:\mathrm{3}{x}+\mathrm{log}\left({by}\right), \\ $$$$\mathrm{4}{x}+\mathrm{log}\left({bz}\right)\:{are}\:{in}\:{A}.{P}. \\ $$$$\boldsymbol{{True}}/\boldsymbol{{False}}? \\ $$

Question Number 25377    Answers: 1   Comments: 0

Question Number 25375    Answers: 1   Comments: 0

what is HCF of(1/(3 )) (2/3) (1/4) ?

$${what}\:{is}\:{HCF}\:\:{of}\frac{\mathrm{1}}{\mathrm{3}\:\:}\:\frac{\mathrm{2}}{\mathrm{3}}\:\frac{\mathrm{1}}{\mathrm{4}}\:? \\ $$

Question Number 25374    Answers: 0   Comments: 3

Question Number 25445    Answers: 0   Comments: 0

  Pg 1751      Pg 1752      Pg 1753      Pg 1754      Pg 1755      Pg 1756      Pg 1757      Pg 1758      Pg 1759      Pg 1760   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com