Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1755

Question Number 31296    Answers: 0   Comments: 11

find ∫_0 ^(+∞) (dx/((1+x^2 )^n )) with n integr and n≥1 .

$${find}\:\:\int_{\mathrm{0}} ^{+\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1}\:. \\ $$

Question Number 31295    Answers: 0   Comments: 0

Question Number 31289    Answers: 1   Comments: 0

Question Number 31287    Answers: 0   Comments: 0

Question Number 31286    Answers: 1   Comments: 1

Find all set of ordered triple/s (x,y,z), x,y,z∈ℜ, such that x−y=1−z 3(x^2 −y^2 )=5(1−z^2 ) 7(x^3 −y^3 )=19(1−z^3 ). Please show your solution.

$${Find}\:{all}\:{set}\:{of}\:{ordered}\:{triple}/{s}\:\left({x},{y},{z}\right),\:\:{x},{y},{z}\in\Re,\:{such}\:{that} \\ $$$${x}−{y}=\mathrm{1}−{z} \\ $$$$\mathrm{3}\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)=\mathrm{5}\left(\mathrm{1}−{z}^{\mathrm{2}} \right) \\ $$$$\mathrm{7}\left({x}^{\mathrm{3}} −{y}^{\mathrm{3}} \right)=\mathrm{19}\left(\mathrm{1}−{z}^{\mathrm{3}} \right). \\ $$$${Please}\:{show}\:{your}\:{solution}. \\ $$

Question Number 31284    Answers: 0   Comments: 0

Question Number 31281    Answers: 1   Comments: 0

find three nos in AP whose product is equal to the square of their sum.

$${find}\:{three}\:{nos}\:{in}\:{AP}\:{whose}\:{product} \\ $$$${is}\:{equal}\:{to}\:{the}\:{square}\:{of}\:{their}\:{sum}. \\ $$

Question Number 31265    Answers: 0   Comments: 2

Question Number 31264    Answers: 0   Comments: 2

Find the shortest distance from the plane r^ .n^ =q to the sphere ∣r^ −r_0 ^ ∣=R .

$${Find}\:{the}\:{shortest}\:{distance}\:{from}\:{the} \\ $$$${plane}\:\bar {\boldsymbol{{r}}}.\bar {\boldsymbol{{n}}}=\boldsymbol{{q}}\:\:{to}\:{the}\:{sphere} \\ $$$$\:\mid\bar {\boldsymbol{{r}}}−\bar {\boldsymbol{{r}}}_{\mathrm{0}} \mid=\boldsymbol{{R}}\:\:. \\ $$

Question Number 31292    Answers: 1   Comments: 3

Question Number 31290    Answers: 1   Comments: 1

Question Number 31259    Answers: 0   Comments: 4

Question Number 31255    Answers: 1   Comments: 0

2n boys are randomly divided into two subgroups containing n boys each. The probability that the two tallest boys are in different groups is

$$\mathrm{2}{n}\:\mathrm{boys}\:\mathrm{are}\:\mathrm{randomly}\:\mathrm{divided}\:\mathrm{into}\:\mathrm{two} \\ $$$$\mathrm{subgroups}\:\mathrm{containing}\:{n}\:\mathrm{boys}\:\mathrm{each}.\:\mathrm{The} \\ $$$$\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\mathrm{two}\:\mathrm{tallest}\:\mathrm{boys}\:\mathrm{are} \\ $$$$\mathrm{in}\:\mathrm{different}\:\mathrm{groups}\:\mathrm{is} \\ $$

Question Number 31249    Answers: 0   Comments: 10

2 lines through the point A(5, 1) are tangent to the circle x^2 + y^2 − 4x + 6y + 4 = 0 Find the equation of these 2 lines

$$\mathrm{2}\:\mathrm{lines}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:{A}\left(\mathrm{5},\:\mathrm{1}\right)\:\mathrm{are}\:\mathrm{tangent} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{circle}\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:−\:\mathrm{4}{x}\:+\:\mathrm{6}{y}\:+\:\mathrm{4}\:=\:\mathrm{0} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{these}\:\mathrm{2}\:\mathrm{lines} \\ $$

Question Number 31246    Answers: 1   Comments: 2

without using lohpital find lim_(x→π/6) ((1−2sinx)/(cos 3x))

$$\mathrm{without}\:\mathrm{using}\:\mathrm{lohpital} \\ $$$$\mathrm{find} \\ $$$$\underset{\mathrm{x}\rightarrow\pi/\mathrm{6}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{2sinx}}{\mathrm{cos}\:\mathrm{3x}} \\ $$

Question Number 31237    Answers: 0   Comments: 3

Show that A−B = B′ ∩ A.

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{A}−\mathrm{B}\:=\:\mathrm{B}'\:\cap\:\mathrm{A}. \\ $$

Question Number 31229    Answers: 0   Comments: 1

simplify A_n = C_n ^1 +2 C_n ^2 +3 C_n ^3 +... + n C_n ^n .

$${simplify}\:{A}_{{n}} =\:{C}_{{n}} ^{\mathrm{1}} \:\:+\mathrm{2}\:{C}_{{n}} ^{\mathrm{2}} \:+\mathrm{3}\:{C}_{{n}} ^{\mathrm{3}} \:+...\:+\:{n}\:{C}_{{n}} ^{{n}} \:. \\ $$

Question Number 31214    Answers: 2   Comments: 2

Question Number 31209    Answers: 1   Comments: 2

Question Number 31194    Answers: 2   Comments: 1

Find the remainder when x^(203) −1 is divided by x^4 −1.

$${Find}\:{the}\:{remainder}\:{when}\:{x}^{\mathrm{203}} −\mathrm{1} \\ $$$${is}\:{divided}\:{by}\:{x}^{\mathrm{4}} −\mathrm{1}. \\ $$

Question Number 31193    Answers: 1   Comments: 0

Question Number 31188    Answers: 0   Comments: 2

Question Number 31187    Answers: 0   Comments: 4

Question Number 31149    Answers: 1   Comments: 1

here is a question really troubling me. A cylindrical tube rolling down a slope of inclination θ moves a distance L in the time T. The equation relating these quantities is L(3+(a^2 /P))=QT^2 sin θ where a is the internal radius of the tube and P and Q are constants.What are the units of P and Q?

$${here}\:{is}\:{a}\:{question}\:{really}\:{troubling} \\ $$$${me}. \\ $$$$ \\ $$$${A}\:{cylindrical}\:{tube}\:{rolling}\:{down}\:{a} \\ $$$${slope}\:{of}\:{inclination}\:\theta\:{moves}\:{a} \\ $$$${distance}\:{L}\:{in}\:{the}\:{time}\:{T}.\:{The} \\ $$$${equation}\:{relating}\:{these}\:{quantities}\:{is} \\ $$$$ \\ $$$$\:\:\:{L}\left(\mathrm{3}+\frac{{a}^{\mathrm{2}} }{{P}}\right)={QT}^{\mathrm{2}} \mathrm{sin}\:\theta\:{where}\:{a}\:{is} \\ $$$${the}\:{internal}\:{radius}\:{of}\:{the}\:{tube}\:{and} \\ $$$${P}\:\:{and}\:{Q}\:{are}\:{constants}.{What}\:{are} \\ $$$${the}\:{units}\:{of}\:{P}\:{and}\:{Q}? \\ $$

Question Number 31133    Answers: 0   Comments: 3

Question Number 31125    Answers: 2   Comments: 1

Let n be a positive integer. Then x^2 + 1 is a factor of (x^4 + 3)^n − [(x^2 + 3)(x^2 − 1)]^n for ... (A) All n (B) Odd n (C) Even n (D) n ≥ 3 (E) None of these options

$$\mathrm{Let}\:{n}\:\mathrm{be}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{integer}.\:\mathrm{Then}\:{x}^{\mathrm{2}} \:+\:\mathrm{1}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of}\:\left({x}^{\mathrm{4}} \:+\:\mathrm{3}\right)^{{n}} \:−\:\left[\left({x}^{\mathrm{2}} \:+\:\mathrm{3}\right)\left({x}^{\mathrm{2}} \:−\:\mathrm{1}\right)\right]^{{n}} \\ $$$$\mathrm{for}\:... \\ $$$$\left(\mathrm{A}\right)\:\mathrm{All}\:{n} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{Odd}\:{n} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{Even}\:{n} \\ $$$$\left(\mathrm{D}\right)\:{n}\:\geqslant\:\mathrm{3} \\ $$$$\left(\mathrm{E}\right)\:\mathrm{None}\:\mathrm{of}\:\mathrm{these}\:\mathrm{options} \\ $$

  Pg 1750      Pg 1751      Pg 1752      Pg 1753      Pg 1754      Pg 1755      Pg 1756      Pg 1757      Pg 1758      Pg 1759   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com