Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1755
Question Number 28095 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\:\left(\mathrm{1}\:+\:\mathrm{tanx}\right)^{−\mathrm{cotx}} \\ $$
Question Number 28093 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\:\left(\mathrm{1}\:+\:\mathrm{tanx}\right)^{\mathrm{cotx}} \\ $$
Question Number 28113 Answers: 1 Comments: 1
Question Number 28110 Answers: 0 Comments: 1
Question Number 28088 Answers: 0 Comments: 6
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\:\left(\mathrm{sinx}\right)^{\left(\mathrm{tanx}\right)} \\ $$
Question Number 28084 Answers: 0 Comments: 6
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\left(\mathrm{x}\:−\:\mathrm{log}_{\mathrm{e}} \mathrm{x}\right) \\ $$
Question Number 28076 Answers: 1 Comments: 1
Question Number 28075 Answers: 0 Comments: 0
Question Number 28073 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{t}\:{e}^{−{x}} \right){dx}\:\:\:{with}\:\:\mathrm{0}<{t}<\mathrm{1}\:\:. \\ $$
Question Number 28072 Answers: 0 Comments: 1
$${let}\:{give}\:{the}\:{function}\:\:{f}\left({x}\right)={x}^{\mathrm{4}} \:\:\:\mathrm{2}\pi\:{periodic}\:{and}\:{even} \\ $$$${developp}\:\:\:{f}\:{atfourier}\:{series}. \\ $$
Question Number 28071 Answers: 0 Comments: 3
$${let}\:{give}\:\:{A}_{{p}} =\:\int_{\mathrm{0}} ^{\pi} \:{t}^{{p}} \:{cos}\left({nx}\right)\:\:{with}\:{nand}\:{p}\:{from}\:{N} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{relation}\:{between}\:\:{A}_{{p}} \:{and}\:{A}_{{p}−\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{arelation}\:{between}\:\:{A}_{\mathrm{2}{p}} \:\:{and}\:{A}_{\mathrm{2}{p}−\mathrm{2}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{a}\:{relation}?{betweer}\:{A}_{\mathrm{2}{p}+\mathrm{1}} \:{and}\:\:{A}_{\mathrm{2}{p}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{cslculat}\:\:{A}_{\mathrm{0}\:} ,\:{A}_{\mathrm{1}} ,\:{A}_{\mathrm{2}} \:,\:{A}_{\mathrm{2}} . \\ $$
Question Number 28070 Answers: 1 Comments: 0
Question Number 28068 Answers: 0 Comments: 0
$${let}\:{give}\:\:\:{I}_{{a}} \:\:=\:\:\int_{\mathrm{0}} ^{+\propto} \:\:\:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:\:{by}\:{using}\:{Residus}\:{theorem} \\ $$$${find}\:{the}\:{value}\:{of}\:\:{I}_{{a}} \:\:\:\:\:{with}\:\:\mathrm{0}<{a}<\mathrm{1}\:\:\:. \\ $$
Question Number 28067 Answers: 0 Comments: 0
$${let}\:{give}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}+{cosx}}\:\:\:{fonction}\:\mathrm{2}\pi\:{periodic}\:{even}. \\ $$$${developp}\:{f}\:\:{at}\:{fourier}\:{series}. \\ $$
Question Number 28050 Answers: 0 Comments: 14
Question Number 28044 Answers: 0 Comments: 8
Question Number 28041 Answers: 0 Comments: 0
$$\int\frac{\varkappa^{\mathrm{2}} }{\left(\varkappa\mathrm{sin}\varkappa+\mathrm{cos}\varkappa\right)^{\mathrm{2}} }\mathrm{d}\left(\varkappa\right) \\ $$
Question Number 28035 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:{x}\frac{{arctan}\left(\mathrm{2}{x}\right)}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 28034 Answers: 0 Comments: 0
Question Number 28033 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xln}\left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 28027 Answers: 1 Comments: 0
Question Number 36365 Answers: 1 Comments: 2
Question Number 36366 Answers: 3 Comments: 0
Question Number 28015 Answers: 1 Comments: 1
Question Number 28006 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\infty} \left(\mathrm{ln}\:{x}\right)^{−\mathrm{3}} {dx} \\ $$
Question Number 27999 Answers: 0 Comments: 1
$${find}\:\:{I}_{{n},{m}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:\left(\mathrm{1}−{x}\right)^{{m}} \:{dx}\:{with} \\ $$$$\left({n},{m}\right)\in{N}^{\bigstar^{\mathrm{2}} } \:{and}\:{calculate}\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \:{I}_{{n},{m}} . \\ $$
Pg 1750 Pg 1751 Pg 1752 Pg 1753 Pg 1754 Pg 1755 Pg 1756 Pg 1757 Pg 1758 Pg 1759
Terms of Service
Privacy Policy
Contact: info@tinkutara.com