Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1755

Question Number 28095    Answers: 0   Comments: 2

lim_(x→0^− ) (1 + tanx)^(−cotx)

$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\:\left(\mathrm{1}\:+\:\mathrm{tanx}\right)^{−\mathrm{cotx}} \\ $$

Question Number 28093    Answers: 0   Comments: 2

lim_(x→0^− ) (1 + tanx)^(cotx)

$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\:\left(\mathrm{1}\:+\:\mathrm{tanx}\right)^{\mathrm{cotx}} \\ $$

Question Number 28113    Answers: 1   Comments: 1

Question Number 28110    Answers: 0   Comments: 1

Question Number 28088    Answers: 0   Comments: 6

lim_(x→0^+ ) (sinx)^((tanx))

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\:\left(\mathrm{sinx}\right)^{\left(\mathrm{tanx}\right)} \\ $$

Question Number 28084    Answers: 0   Comments: 6

lim_(x→∞) (x − log_e x)

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\left(\mathrm{x}\:−\:\mathrm{log}_{\mathrm{e}} \mathrm{x}\right) \\ $$

Question Number 28076    Answers: 1   Comments: 1

Question Number 28075    Answers: 0   Comments: 0

Question Number 28073    Answers: 0   Comments: 1

find ∫_0 ^1 e^(−2x) ln(1+t e^(−x) )dx with 0<t<1 .

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{t}\:{e}^{−{x}} \right){dx}\:\:\:{with}\:\:\mathrm{0}<{t}<\mathrm{1}\:\:. \\ $$

Question Number 28072    Answers: 0   Comments: 1

let give the function f(x)=x^4 2π periodic and even developp f atfourier series.

$${let}\:{give}\:{the}\:{function}\:\:{f}\left({x}\right)={x}^{\mathrm{4}} \:\:\:\mathrm{2}\pi\:{periodic}\:{and}\:{even} \\ $$$${developp}\:\:\:{f}\:{atfourier}\:{series}. \\ $$

Question Number 28071    Answers: 0   Comments: 3

let give A_p = ∫_0 ^π t^p cos(nx) with nand p from N 1) find a relation between A_p and A_(p−2) 2) find arelation between A_(2p) and A_(2p−2) 3) find a relation?betweer A_(2p+1) and A_(2p−1) 3) cslculat A_(0 ) , A_1 , A_2 , A_2 .

$${let}\:{give}\:\:{A}_{{p}} =\:\int_{\mathrm{0}} ^{\pi} \:{t}^{{p}} \:{cos}\left({nx}\right)\:\:{with}\:{nand}\:{p}\:{from}\:{N} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{relation}\:{between}\:\:{A}_{{p}} \:{and}\:{A}_{{p}−\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{arelation}\:{between}\:\:{A}_{\mathrm{2}{p}} \:\:{and}\:{A}_{\mathrm{2}{p}−\mathrm{2}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{a}\:{relation}?{betweer}\:{A}_{\mathrm{2}{p}+\mathrm{1}} \:{and}\:\:{A}_{\mathrm{2}{p}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{cslculat}\:\:{A}_{\mathrm{0}\:} ,\:{A}_{\mathrm{1}} ,\:{A}_{\mathrm{2}} \:,\:{A}_{\mathrm{2}} . \\ $$

Question Number 28070    Answers: 1   Comments: 0

Question Number 28068    Answers: 0   Comments: 0

let give I_a = ∫_0 ^(+∝) (t^(a−1) /(1+t))dt by using Residus theorem find the value of I_a with 0<a<1 .

$${let}\:{give}\:\:\:{I}_{{a}} \:\:=\:\:\int_{\mathrm{0}} ^{+\propto} \:\:\:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:\:{by}\:{using}\:{Residus}\:{theorem} \\ $$$${find}\:{the}\:{value}\:{of}\:\:{I}_{{a}} \:\:\:\:\:{with}\:\:\mathrm{0}<{a}<\mathrm{1}\:\:\:. \\ $$

Question Number 28067    Answers: 0   Comments: 0

let give f(x)= (1/(2+cosx)) fonction 2π periodic even. developp f at fourier series.

$${let}\:{give}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}+{cosx}}\:\:\:{fonction}\:\mathrm{2}\pi\:{periodic}\:{even}. \\ $$$${developp}\:{f}\:\:{at}\:{fourier}\:{series}. \\ $$

Question Number 28050    Answers: 0   Comments: 14

Question Number 28044    Answers: 0   Comments: 8

Question Number 28041    Answers: 0   Comments: 0

∫(ϰ^2 /((ϰsinϰ+cosϰ)^2 ))d(ϰ)

$$\int\frac{\varkappa^{\mathrm{2}} }{\left(\varkappa\mathrm{sin}\varkappa+\mathrm{cos}\varkappa\right)^{\mathrm{2}} }\mathrm{d}\left(\varkappa\right) \\ $$

Question Number 28035    Answers: 0   Comments: 2

find the value of ∫_0 ^∞ x((arctan(2x))/((2+x^2 )^2 ))dx .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:{x}\frac{{arctan}\left(\mathrm{2}{x}\right)}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 28034    Answers: 0   Comments: 0

Question Number 28033    Answers: 0   Comments: 1

1) find the value of ∫_0 ^∞ ((ln(x))/(1+x^2 )) dx 2) find the value of ∫_0 ^∞ ((xln(x))/((1+x^2 )^2 ))dx .

$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xln}\left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 28027    Answers: 1   Comments: 0

Question Number 36365    Answers: 1   Comments: 2

Question Number 36366    Answers: 3   Comments: 0

Question Number 28015    Answers: 1   Comments: 1

Question Number 28006    Answers: 0   Comments: 1

∫_0 ^∞ (ln x)^(−3) dx

$$\int_{\mathrm{0}} ^{\infty} \left(\mathrm{ln}\:{x}\right)^{−\mathrm{3}} {dx} \\ $$

Question Number 27999    Answers: 0   Comments: 1

find I_(n,m) = ∫_0 ^1 x^n (1−x)^m dx with (n,m)∈N^★^2 and calculate Σ_(n=0) ^∝ I_(n,m) .

$${find}\:\:{I}_{{n},{m}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:\left(\mathrm{1}−{x}\right)^{{m}} \:{dx}\:{with} \\ $$$$\left({n},{m}\right)\in{N}^{\bigstar^{\mathrm{2}} } \:{and}\:{calculate}\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \:{I}_{{n},{m}} . \\ $$

  Pg 1750      Pg 1751      Pg 1752      Pg 1753      Pg 1754      Pg 1755      Pg 1756      Pg 1757      Pg 1758      Pg 1759   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com