Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1752

Question Number 29222    Answers: 1   Comments: 0

3x−4y=12, xy=2

$$\mathrm{3}{x}−\mathrm{4}{y}=\mathrm{12},\:{xy}=\mathrm{2} \\ $$

Question Number 29217    Answers: 1   Comments: 0

The velocity of a physical system is given by V={(√((p+1/n)))}/x where p=pressure. Find the dimensions of n and x

$${The}\:{velocity}\:{of}\:{a}\:{physical}\:{system} \\ $$$${is}\:{given}\:{by}\:{V}=\left\{\sqrt{\left({p}+\mathrm{1}/{n}\right)}\right\}/{x} \\ $$$${where}\:{p}={pressure}.\:{Find}\:{the} \\ $$$${dimensions}\:{of}\:{n}\:{and}\:{x} \\ $$

Question Number 29216    Answers: 1   Comments: 0

A horizontal force of 0.8N is required to pull a 5kg block across a table top at a constant speed. With the block initially at rest,a 20g bullet fired horizontally into the block to slide 1.5m before coming to rest again.Determine the speed v of the bullet,where the bullet is assumed to be embedded in the block.

$${A}\:{horizontal}\:{force}\:{of}\:\mathrm{0}.\mathrm{8}{N}\:{is} \\ $$$${required}\:{to}\:{pull}\:{a}\:\mathrm{5}{kg}\:{block}\:{across} \\ $$$${a}\:{table}\:{top}\:{at}\:{a}\:{constant}\:{speed}. \\ $$$${With}\:{the}\:{block}\:{initially}\:{at}\:{rest},{a} \\ $$$$\mathrm{20}{g}\:{bullet}\:{fired}\:{horizontally}\:{into} \\ $$$${the}\:{block}\:{to}\:{slide}\:\mathrm{1}.\mathrm{5}{m}\:{before} \\ $$$${coming}\:{to}\:{rest}\:{again}.{Determine} \\ $$$${the}\:{speed}\:{v}\:{of}\:{the}\:{bullet},{where} \\ $$$${the}\:{bullet}\:{is}\:{assumed}\:{to}\:{be} \\ $$$${embedded}\:{in}\:{the}\:{block}. \\ $$

Question Number 29213    Answers: 0   Comments: 1

Two masses m and 2m,approach each l along a path at right angle to each other and move off at 2m/s at angle 37° to the original direction of mass m. What where the initial speeds of the two particles?

$${Two}\:{masses}\:{m}\:{and}\:\mathrm{2}{m},{approach} \\ $$$${each}\:{l}\:{along}\:{a}\:{path}\:{at}\:{right} \\ $$$${angle}\:{to}\:{each}\:{other}\:{and}\:{move}\:{off} \\ $$$${at}\:\mathrm{2}{m}/{s}\:{at}\:{angle}\:\mathrm{37}°\:{to}\:{the} \\ $$$${original}\:{direction}\:{of}\:{mass}\:{m}. \\ $$$${What}\:{where}\:{the}\:{initial}\:{speeds}\:{of} \\ $$$${the}\:{two}\:{particles}? \\ $$

Question Number 29212    Answers: 1   Comments: 1

A block of wood of mass 0.6kg is balanced on top of vertical port 2m high.A 10g bullet is fired horizontally into the block and the embedded bullet land at a 4m from the base of the port.Find the initial velocity of the bullet.

$${A}\:{block}\:{of}\:{wood}\:{of}\:{mass}\:\mathrm{0}.\mathrm{6}{kg}\:{is} \\ $$$${balanced}\:{on}\:{top}\:{of}\:{vertical}\:{port} \\ $$$$\mathrm{2}{m}\:{high}.{A}\:\mathrm{10}{g}\:{bullet}\:{is}\:{fired} \\ $$$${horizontally}\:{into}\:{the}\:{block}\:{and} \\ $$$${the}\:{embedded}\:{bullet}\:{land}\:{at}\:{a}\:\mathrm{4}{m} \\ $$$${from}\:{the}\:{base}\:{of}\:{the}\:{port}.{Find} \\ $$$${the}\:{initial}\:{velocity}\:{of}\:{the}\:{bullet}. \\ $$

Question Number 29209    Answers: 1   Comments: 4

Question Number 29202    Answers: 1   Comments: 0

Find area between by y=1 and y=((1−x^2 )/(1+x^2 )) .

$${Find}\:{area}\:{between}\:{by}\:{y}=\mathrm{1}\:\:{and} \\ $$$${y}=\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:. \\ $$

Question Number 29201    Answers: 2   Comments: 0

Question Number 29198    Answers: 1   Comments: 1

Question Number 29196    Answers: 0   Comments: 0

Let s = n_c_1 − (1+(1/2))n_c_2 +(1+(1/2)+(1/3))n_c_3 +.......+(−1)^(n−1) (1+(1/2)+(1/3)+....+(1/n))n_c_n then prove that s×n =1.

$$\mathrm{Let}\:\mathrm{s}\:=\:\mathrm{n}_{\mathrm{c}_{\mathrm{1}} } \:−\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{n}_{\mathrm{c}_{\mathrm{2}} } \:+\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)\mathrm{n}_{\mathrm{c}_{\mathrm{3}} } \\ $$$$+.......+\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+....+\frac{\mathrm{1}}{\mathrm{n}}\right)\mathrm{n}_{\mathrm{c}_{\mathrm{n}} } \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{s}×\mathrm{n}\:=\mathrm{1}. \\ $$

Question Number 29231    Answers: 1   Comments: 0

Question Number 29180    Answers: 1   Comments: 0

lim_(x → a) ((((x)^(1/m) − (a)^(1/m) )/((x)^(1/n) − (a)^(1/n) ))) Don′t use L′hospital rules :-)

$$\underset{\mathrm{x}\:\rightarrow\:\mathrm{a}} {\mathrm{lim}}\:\left(\frac{\sqrt[{\mathrm{m}}]{\mathrm{x}}\:−\:\sqrt[{\mathrm{m}}]{\mathrm{a}}}{\sqrt[{\mathrm{n}}]{\mathrm{x}}\:−\:\sqrt[{\mathrm{n}}]{\mathrm{a}}}\right) \\ $$$$\left.\mathrm{Don}'\mathrm{t}\:\mathrm{use}\:\mathrm{L}'\mathrm{hospital}\:\mathrm{rules}\::-\right) \\ $$

Question Number 29173    Answers: 1   Comments: 0

find cos(5α) interms of cosα then find the value of cos((π/(10))).

$${find}\:{cos}\left(\mathrm{5}\alpha\right)\:{interms}\:{of}\:{cos}\alpha\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$${cos}\left(\frac{\pi}{\mathrm{10}}\right). \\ $$

Question Number 29172    Answers: 1   Comments: 0

Question Number 29171    Answers: 0   Comments: 0

Question Number 29170    Answers: 0   Comments: 0

Question Number 29169    Answers: 0   Comments: 1

factorize inside R[x] the polynomial p(x)= x^8 −1.

$${factorize}\:{inside}\:{R}\left[{x}\right]\:{the}\:{polynomial} \\ $$$${p}\left({x}\right)=\:{x}^{\mathrm{8}} −\mathrm{1}. \\ $$

Question Number 29168    Answers: 0   Comments: 1

Question Number 29167    Answers: 0   Comments: 1

let give S_n = Σ_(k=1) ^(n−1) sin(((kπ)/n)) find lim_(n→+∞) (S_n /n) .

$${let}\:{give}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {sin}\left(\frac{{k}\pi}{{n}}\right)\:\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{{S}_{{n}} }{{n}}\:\:. \\ $$

Question Number 29166    Answers: 0   Comments: 1

simlify S_n = Σ_(k=1) ^n k(1+i)^(k−1) .

$${simlify}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}\left(\mathrm{1}+{i}\right)^{{k}−\mathrm{1}} \:\:\:\:. \\ $$

Question Number 29165    Answers: 0   Comments: 1

give the factorization inside C[x] for p(x)= x^4 −((1−i(√3))/2) .

$${give}\:{the}\:{factorization}\:{inside}\:{C}\left[{x}\right]\:{for} \\ $$$${p}\left({x}\right)=\:\:{x}^{\mathrm{4}} \:−\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:. \\ $$

Question Number 29164    Answers: 0   Comments: 1

let put α= 1+i(√3) simlify A_n = Σ_(k=0) ^n α^k .

$${let}\:{put}\:\alpha=\:\mathrm{1}+{i}\sqrt{\mathrm{3}}\:\:\:\:\:{simlify} \\ $$$${A}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\alpha^{{k}} \:\:\:. \\ $$

Question Number 29163    Answers: 0   Comments: 0

let give (n,p) from N^2 and 1≤p≤n prove that Σ_(k=0) ^p C_n ^k C_(n−k) ^(p−k) ==2^p C_n ^p .

$${let}\:{give}\:\left({n},{p}\right)\:{from}\:{N}^{\mathrm{2}} \:{and}\:\mathrm{1}\leqslant{p}\leqslant{n}\:{prove}\:{that}\: \\ $$$$\sum_{{k}=\mathrm{0}} ^{{p}} \:{C}_{{n}} ^{{k}} \:{C}_{{n}−{k}} ^{{p}−{k}} ==\mathrm{2}^{{p}} \:\:{C}_{{n}} ^{{p}} . \\ $$$$ \\ $$

Question Number 29162    Answers: 0   Comments: 1

find find I= ∫_1 ^3 ((∣x−2∣)/((x^2 −4x)^2 ))dx .

$${find}\:\:{find}\:{I}=\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\:\:\frac{\mid{x}−\mathrm{2}\mid}{\left({x}^{\mathrm{2}} −\mathrm{4}{x}\right)^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 29161    Answers: 1   Comments: 1

let give f(x)=(√(x−1+2(√(x−2)))) +(√(x−1−2(√(x−2)))) 1) simlify f(x) 2) solve inside N^2 the equation f(x)=y.

$${let}\:{give}\:{f}\left({x}\right)=\sqrt{{x}−\mathrm{1}+\mathrm{2}\sqrt{{x}−\mathrm{2}}}\:\:+\sqrt{{x}−\mathrm{1}−\mathrm{2}\sqrt{{x}−\mathrm{2}}} \\ $$$$\left.\mathrm{1}\right)\:{simlify}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{solve}\:{inside}\:\mathbb{N}^{\mathrm{2}} \:{the}\:{equation}\:{f}\left({x}\right)={y}. \\ $$

Question Number 29149    Answers: 1   Comments: 0

(u_n )_n is arithmetic progression/ u_n = u_0 +nr find S_n = Σ_(k=0) ^n u_k ^2 .

$$\left({u}_{{n}} \right)_{{n}} \:\:{is}\:{arithmetic}\:{progression}/\:{u}_{{n}} =\:{u}_{\mathrm{0}} +{nr}\: \\ $$$${find}\:{S}_{{n}} =\:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{u}_{{k}} ^{\mathrm{2}} .\: \\ $$

  Pg 1747      Pg 1748      Pg 1749      Pg 1750      Pg 1751      Pg 1752      Pg 1753      Pg 1754      Pg 1755      Pg 1756   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com