Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1747
Question Number 31858 Answers: 0 Comments: 1
$$\int\frac{{sinx}}{{x}}{dx} \\ $$
Question Number 31846 Answers: 1 Comments: 2
$$\mathrm{25}\left[\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}−\mathrm{3}\right)^{\mathrm{2}} \right]=\left(\mathrm{3}{x}−\mathrm{4}{y}+\mathrm{7}\right)^{\mathrm{2}} \\ $$$${is}\:{the}\:{equation}\:{of}\:{parabola}.{Find} \\ $$$${length}\:{of}\:{latus}\:{rectum} \\ $$
Question Number 31839 Answers: 0 Comments: 1
$${I}\:=\:\int\:\sqrt{{x}\:+\:\sqrt{{x}^{\mathrm{2}} \:−\:\mathrm{1}}}\:{dx} \\ $$
Question Number 31838 Answers: 0 Comments: 0
$$\mathrm{Given} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{3}}{\mathrm{16}}\:\left(\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right){dx}\right){x}^{\mathrm{2}} \:−\:\frac{\mathrm{9}}{\mathrm{10}}\left(\int_{\mathrm{0}} ^{\mathrm{2}} \:{f}\left({x}\right){dx}\right){x}\:+\:\mathrm{2}\left(\int_{\mathrm{0}} ^{\mathrm{3}} \:{f}\left({x}\right){dx}\right)\:+\:\mathrm{4} \\ $$$$\mathrm{Solve} \\ $$$$\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{t}\:+\:\left(\int_{{f}\left(\mathrm{2}\right)\:+\:\mathrm{2}} ^{{f}^{−\mathrm{1}} \left({t}\right)} \left[{f}\:'\left({x}\right)\right]^{\mathrm{2}} \:{dx}\right)}{\mathrm{1}\:−\:\mathrm{cos}\:{t}\:\mathrm{cosh}\:\mathrm{2}{t}\:\mathrm{cos}\:\mathrm{3}{t}} \\ $$
Question Number 31835 Answers: 0 Comments: 5
Question Number 31833 Answers: 1 Comments: 0
Question Number 31822 Answers: 1 Comments: 0
Question Number 31820 Answers: 1 Comments: 0
Question Number 31812 Answers: 2 Comments: 0
$${Find}\:{the}\:{equation}\:{of}\:{the}\:{line} \\ $$$${that}\:{is}\:{tangent}\:{to}\:{the}\:{curve}\:{y}={x}^{\mathrm{3}} \\ $$$${and}\:{is}\:{parallel}\:{to}\:{the}\:{line} \\ $$$$\mathrm{3}{x}−{y}+\mathrm{1}=\mathrm{0} \\ $$
Question Number 31811 Answers: 1 Comments: 2
$${find}\:{the}\:{domain}\:{of} \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{7}}{\left[\mathrm{2}−{x}^{\mathrm{2}} \right]} \\ $$
Question Number 31809 Answers: 0 Comments: 1
$${Find}\:{the}\:{domain}\:{and}\:{range}\:{of} \\ $$$${f}\left({x}\right)=\frac{{x}−\mathrm{1}}{\left[{x}\right]} \\ $$
Question Number 31808 Answers: 0 Comments: 2
$$\mathrm{The}\:\mathrm{numeric}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{is}: \\ $$$$ \\ $$$$\frac{\mathrm{Sec}\:\mathrm{1320}°}{\mathrm{2}}\:−\:\mathrm{2}\:\centerdot\:\mathrm{cos}\:\left(\frac{\mathrm{53}\pi}{\mathrm{3}}\right)\:+\:\left(\mathrm{tg}\:\mathrm{2220}°\right)^{\mathrm{2}} \\ $$
Question Number 31804 Answers: 1 Comments: 0
$${A}\:{quadratic}\:{equation}\:{p}\left({x}\right)=\mathrm{0}\:{having} \\ $$$${coefficient}\:{of}\:{x}^{\mathrm{2}} \:{unity}\:{is}\:{such}\:{that} \\ $$$${p}\left({x}\right)=\mathrm{0}\:{and}\:{p}\left({p}\left({p}\left({x}\right)\right)\right)=\mathrm{0}\:{have}\:{a}\: \\ $$$${common}\:{root}\:{then}, \\ $$$${prove}\:{that}\::\:\:{p}\left(\mathrm{0}\right)×{p}\left(\mathrm{1}\right)=\mathrm{0}. \\ $$
Question Number 31794 Answers: 0 Comments: 2
Question Number 31792 Answers: 0 Comments: 4
Question Number 31787 Answers: 2 Comments: 0
$$\int\frac{\mathrm{4}{x}−\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{8}}{dx} \\ $$
Question Number 31785 Answers: 1 Comments: 0
$${A}=\:\begin{bmatrix}{\mathrm{1}\:\mathrm{5}}\\{\mathrm{6}\:\mathrm{7}}\end{bmatrix}{find}\:{A}^{{k}} \\ $$
Question Number 31772 Answers: 0 Comments: 0
Question Number 31771 Answers: 1 Comments: 1
$${Consider}\:{a}\:{sequence}\:{in}\:{the}\:{form}\:{of} \\ $$$${groups}\:\left(\mathrm{1}\right),\left(\mathrm{2},\mathrm{2}\right),\left(\mathrm{3},\mathrm{3},\mathrm{3}\right),\left(\mathrm{4},\mathrm{4},\mathrm{4},\mathrm{4}\right), \\ $$$$\left(\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5}\right),............ \\ $$$${then}\:{the}\:\mathrm{2000}{th}\:{term}\:{of}\:{the}\:{above}\: \\ $$$${sequence}\:{is}\::\:? \\ $$
Question Number 31768 Answers: 0 Comments: 0
$${Please}\:{help} \\ $$$$ \\ $$$${What}\:{is}\:{the}\:{kinetic}\:{energy}\:{of}\:{the} \\ $$$${earth}?{Please}\:{prove}\:{the}\:{result}. \\ $$$$ \\ $$$${Thanks}\:{in}\:{advance}! \\ $$
Question Number 31767 Answers: 0 Comments: 0
$${calculate}\:{the}\:{angular}\:{velocity}\:{of} \\ $$$${the}\:{earth}\:{about}\:{its}\:{axis}\:{and}\:{its} \\ $$$${angular}\:{velocity}\:{about}\:{the}\:{axis}\: \\ $$$${and}\:{the}\:{sun}. \\ $$
Question Number 31766 Answers: 0 Comments: 1
$${Calculate}\:{the}\:{moment}\:{of}\:{inertia} \\ $$$${of}\:{the}\:{earth}\:{abouth}\:{its}\:{axis}.{If} \\ $$$${the}\:{mass}\:{of}\:{the}\:{earth}\:{is}\:\mathrm{6}.\mathrm{0}×\mathrm{10}^{\mathrm{34}} {kg} \\ $$$${and}\:{radius}\:\mathrm{6}.\mathrm{4}×\mathrm{10}^{\mathrm{6}} {m}. \\ $$$$\left({Assume}\:{the}\:{earth}\:{to}\:{be}\:{a}\:{perfect}\right. \\ $$$$\left.{sphere}\right) \\ $$
Question Number 31763 Answers: 3 Comments: 0
$${please}\:{find}\:{the}\:{integral}\:{solutions}\:\left({x}\:{and}\:{y}\right)\: \\ $$$$\left({xy}−\mathrm{7}\right)^{\mathrm{2}} \:={x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \\ $$
Question Number 31749 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{3}^{{n}} \left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:. \\ $$
Question Number 31748 Answers: 0 Comments: 3
$$\left.\mathrm{1}\right){find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{3}{n}} }{\left(\mathrm{3}{n}\right)!} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{8}^{{n}} }{\left(\mathrm{3}{n}\right)!}\:\:. \\ $$
Question Number 31747 Answers: 0 Comments: 1
$${let}\:{give}\:\mid\lambda\mid<\mathrm{1}\:{and}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{cos}\left({nx}\right)}{\mathrm{1}−\mathrm{2}\lambda\:{cosx}\:+\lambda^{\mathrm{2}} } \\ $$$${prove}\:{that}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} \:{is}\:{convergent}\:{and}\:{find}\:{its}\:{sum}\:. \\ $$
Pg 1742 Pg 1743 Pg 1744 Pg 1745 Pg 1746 Pg 1747 Pg 1748 Pg 1749 Pg 1750 Pg 1751
Terms of Service
Privacy Policy
Contact: info@tinkutara.com