1) let consider f(x)=∣cosx∣ π periodix
developp f at fourier serie
2)find the valueof Σ_(n=1) ^∞ (((−1)^n )/(4n^2 −1))
3)find the value of Σ_(n=1) ^∞ (1/((4n^2 −1)^2 )) .
If the equation
(p^2 −4)(p^2 −9)x^3 +[((p−2)/2)]x^2 +(p−4)(p−3)(p−2)x+{2p−1}=0.
is satisfied by all values of x in (0,3] then
sum of all possible integral values of
′p′ is ?
{.} = fractional part function.
[.]= greatest integer function.
Let a,b are positive real numbers such
that a−b=10 , then the smallest value
of the constant k for which
(√((x^2 +ax))) − (√((x^2 +bx))) < k for all x>0
is ?
Three forces of magnitude 6N,2N
and 3N act on the same point on the
north,south and west directions respectively.
find the magnitude and direction of the
resultant force.