please is there any general way for
calculating the error or uncertainty
in g when
m=((4Ο^2 )/g) where m=slope and
g=acceleration due to gravity
please help
let consider the serie Ξ£_(nβ₯1) sin((1/(βn)))x^n
1) find the radius of convergence
2)study the convergence at βR and R
3) let S(x)its sum study the continuity
of S
4) prove that (1βx)_(xβ1^β ) S(x)β0
let give S(x)=Ξ£_(nβ₯0) (((β1)^n )/(β(x+n))) ,x>0
1)study the contnuity ,derivsbility,limits
at 0^+ and +β
2) we give β«_0 ^β e^(βt^2 ) dt =((βΟ)/2) .prove that
β x>0 S(x)=(1/(βΟ)) β«_0 ^β (e^(βtx) /((βt)(1+e^(βt) )))dt .
let S_n = Ξ£_(k=1) ^β (((β1)^(kβ1) )/k) and
T_n = Ξ£_(k=1) ^β (((β1)^(kβ1) )/(2kβ1))
1) calculate lim S_n and lim T_n (nββ)
2)prove that Ξ£(S_n βln2) and
Ξ£(T_n β(Ο/4))converges and find its sum