Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1747
Question Number 27101 Answers: 1 Comments: 0
Question Number 27111 Answers: 1 Comments: 0
Question Number 27098 Answers: 0 Comments: 2
$${let}\:{give}\:{S}\left({x}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{{x}^{{n}} }{{n}}\:\:{and}\:\:{W}\left({x}\right)=\:\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} }{{n}^{\mathrm{2}} } \\ $$$${calculate}\:\:\:{S}\left({x}\right).{W}\left({x}\right).\:\:\:{in}\:{that}\:{we}\:{know}\:/{x}/<\mathrm{1}. \\ $$
Question Number 27097 Answers: 1 Comments: 2
$${let}\:{give}\:\:\:{H}_{{n}} \:=\:\sum_{{k}=\mathrm{1}} ^{{n}\:\:} \:\frac{\mathrm{1}}{{k}}\:\:\:\:{for}\:{p}\:\:{fixed}\:{from}\:\mathbb{N}\: \\ $$$${find}\:\:{lim}_{{n}−>\propto} \:\:{H}_{{n}+{p}} \:\:\:−\:\:{H}_{{n}} \:\:. \\ $$
Question Number 27094 Answers: 1 Comments: 2
$${if}\:\mathrm{1}+{x}+{x}^{\mathrm{2}} =\mathrm{0}\:{find}\:{the}\:{value}\:{of}\: \\ $$$${A}=\:\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{6}} \:+\left(\:{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{6}} \:\:+...\:\left(\:\:{x}^{\mathrm{100}} +\frac{\mathrm{1}}{{x}^{\mathrm{100}} }\right)^{\mathrm{6}} \:. \\ $$
Question Number 27083 Answers: 1 Comments: 0
$$\int\mathrm{3}{x}^{\mathrm{2}} /{x}^{\mathrm{6}} +\mathrm{1} \\ $$$$ \\ $$
Question Number 27081 Answers: 1 Comments: 0
$${let}\:{give}\:{f}\left({x}\right)=\:\:\frac{{x}}{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}}\:\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:\:. \\ $$
Question Number 27076 Answers: 0 Comments: 1
Question Number 27073 Answers: 1 Comments: 0
$$\int\mathrm{ln}\:{x}×\mathrm{cos}\:\mathrm{2ln}\:{xdx} \\ $$
Question Number 27075 Answers: 0 Comments: 0
$$\mathrm{Laws}\:\mathrm{of}\:\mathrm{Motion}\:\mathrm{question}\:\mathrm{at} \\ $$$$\mathrm{ibb}.\mathrm{co}/\mathrm{cqq1NG} \\ $$$$\mathrm{I}\:\mathrm{tried}\:\mathrm{uploading}\:\mathrm{here}\:\mathrm{but}\:\mathrm{it}\:\mathrm{doesn}'\mathrm{t} \\ $$$$\mathrm{get}\:\mathrm{uploaded}. \\ $$
Question Number 27074 Answers: 2 Comments: 0
Question Number 27065 Answers: 0 Comments: 0
Question Number 27057 Answers: 1 Comments: 3
$$\mathrm{Try}\:\mathrm{to}\:\mathrm{write}\:\mathrm{new}\:\mathrm{year}\:\mathrm{number} \\ $$$$\left(\mathrm{2018}\right)\mathrm{as}: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{primes} \\ $$$$\left(\mathrm{ii}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{three}\:\mathrm{primes} \\ $$$$\left(\mathrm{iii}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{primes} \\ $$$$\left(\mathrm{iv}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{as}\:\mathrm{many}\:\mathrm{distinct}\:\mathrm{primes}\:\mathrm{as} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{possible}. \\ $$
Question Number 27055 Answers: 1 Comments: 1
Question Number 27050 Answers: 0 Comments: 2
Question Number 27059 Answers: 0 Comments: 2
Question Number 27046 Answers: 0 Comments: 0
$${Considering}\:\boldsymbol{{y}}=\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{px}}+\boldsymbol{{q}} \\ $$$${If}\:\:\:\:\:\frac{{dy}}{{dx}}\mid_{{x}=\alpha} =\mathrm{0}\:\:\Rightarrow\:\:\alpha^{\mathrm{2}} =−\frac{{p}}{\mathrm{3}} \\ $$$${if}\:\:\:\frac{{d}\left({y}/{x}\right)}{{dx}}\mid_{{x}=\beta} =\mathrm{0}\:\:\:\Rightarrow\:\beta^{\:\mathrm{3}} =\frac{{q}}{\mathrm{2}} \\ $$$${roots}\:{of}\:{the}\:{cubic}\:\:{eq}^{{n}} \:{are}: \\ $$$$\:\:\:\:{x}=\left[−\beta^{\:\mathrm{3}} \pm\sqrt{\beta^{\:\mathrm{6}} −\alpha^{\mathrm{6}} }\:\right]^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left[\beta^{\:\mathrm{3}} \pm\sqrt{\beta^{\:\mathrm{6}} −\alpha^{\mathrm{6}} }\:\right]^{\mathrm{1}/\mathrm{3}} \:. \\ $$$$\:{Why}\:{such}\:{a}\:{connection}? \\ $$$${If}\:{equation}\:{is}\:{quadratic}\:{even\_} \\ $$$$\:\:\:\:\boldsymbol{{y}}=\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{bx}}+\boldsymbol{{c}} \\ $$$$\frac{{dy}}{{dx}}\mid_{{x}=\alpha} =\mathrm{0}\:\:\:\Rightarrow\:\:\alpha=−\frac{{b}}{\mathrm{2}{a}} \\ $$$$\:\:\:\:\:\:\frac{{d}\left({y}/{x}\right)}{{dx}}\mid_{{x}=\beta} =\mathrm{0}\:\:\Rightarrow\:\beta^{\:\mathrm{2}} =\frac{{c}}{{a}} \\ $$$${roots}\:{of}\:{quadratic}\:{eq}.\:{are}: \\ $$$$\:\:\:\:{x}=\boldsymbol{\alpha}\pm\sqrt{\boldsymbol{\alpha}^{\mathrm{2}} −\boldsymbol{\beta}^{\:\mathrm{2}} }\: \\ $$$${why}\:{such}\:{a}\:{connection}\:?\: \\ $$
Question Number 27044 Answers: 1 Comments: 0
Question Number 27061 Answers: 2 Comments: 1
Question Number 27060 Answers: 1 Comments: 1
Question Number 27045 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\int_{\frac{\mathrm{2}}{\pi}} ^{\frac{\mathrm{6}}{\pi}} \:{x}^{\mathrm{3}} \:{cos}\left(\left[\frac{\mathrm{1}}{{x}}\right]\right){dx} \\ $$
Question Number 27033 Answers: 1 Comments: 0
Question Number 27032 Answers: 0 Comments: 1
$${xy}=\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\frac{{dy}}{{dx}}\:\:\:\:{x}=\mathrm{0}\:{y}=\mathrm{1} \\ $$
Question Number 27031 Answers: 1 Comments: 0
Question Number 27028 Answers: 1 Comments: 0
$${y}^{\left(\mathrm{2}\right)} +\mathrm{4}{y}=\mathrm{sinh}\:{x}×\mathrm{sin}\:\mathrm{2}{x} \\ $$
Question Number 27016 Answers: 0 Comments: 1
$${the}\:{intrest}\:{on}\:{surtain}\:{sum}\:{of}\:{money}\:{at}\:{the}\: \\ $$$${end}\:{of}\:\mathrm{6}.\mathrm{25}\:{year}\:{was}\:\frac{\mathrm{5}}{\mathrm{16}}\:{of}\:{the}\:{itself}.{what}\:{is}\:{the} \\ $$$${the}\:{rate}\:{percent}? \\ $$
Pg 1742 Pg 1743 Pg 1744 Pg 1745 Pg 1746 Pg 1747 Pg 1748 Pg 1749 Pg 1750 Pg 1751
Terms of Service
Privacy Policy
Contact: info@tinkutara.com