let give S(x)=Σ_(n≥0) (((−1)^n )/(√(x+n))) ,x>0
1)study the contnuity ,derivsbility,limits
at 0^+ and +∞
2) we give ∫_0 ^∞ e^(−t^2 ) dt =((√π)/2) .prove that
∀ x>0 S(x)=(1/(√π)) ∫_0 ^∞ (e^(−tx) /((√t)(1+e^(−t) )))dt .
let S_n = Σ_(k=1) ^∞ (((−1)^(k−1) )/k) and
T_n = Σ_(k=1) ^∞ (((−1)^(k−1) )/(2k−1))
1) calculate lim S_n and lim T_n (n→∞)
2)prove that Σ(S_n −ln2) and
Σ(T_n −(π/4))converges and find its sum