Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1746

Question Number 32980    Answers: 1   Comments: 0

(d/dx)( determinant ((((x^2 +2)^(x^3 +3) ),2^x ,(cosx^x )),((log_2^(x+1) (x^2 +x^(2x) +3^ )),(xlnx),(sin^(−1) tanx)),(3,π^(sinhx) ,e^x )))=?

$$ \\ $$$$ \\ $$$$\frac{\mathrm{d}}{\mathrm{dx}}\left(\begin{vmatrix}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{x}^{\mathrm{3}} +\mathrm{3}} }&{\mathrm{2}^{\mathrm{x}} }&{\mathrm{cosx}^{\mathrm{x}} }\\{\mathrm{log}_{\mathrm{2}^{\mathrm{x}+\mathrm{1}} } \left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2x}} +\overset{} {\mathrm{3}}\right)}&{\mathrm{xlnx}}&{\mathrm{sin}^{−\mathrm{1}} \mathrm{tanx}}\\{\mathrm{3}}&{\pi^{\mathrm{sinhx}} }&{\mathrm{e}^{\mathrm{x}} }\end{vmatrix}\right)=? \\ $$$$ \\ $$

Question Number 33152    Answers: 0   Comments: 1

it is given that (1/n)Σ_(r=1) ^n x^r =2 and (√((1/n)Σ_(r=1) ^n (x_r )^2 −(1/n^2 )(Σ_(r=1) ^n )^2 ))= 3 determine in terms of n the value of. Σ_(r=1) ^n (x_r +1)^2

$${it}\:{is}\:{given}\:{that} \\ $$$$\frac{\mathrm{1}}{{n}}\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\:{x}^{{r}} =\mathrm{2}\:{and}\:\sqrt{\frac{\mathrm{1}}{{n}}\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\left({x}_{{r}} \right)^{\mathrm{2}} −\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\right)^{\mathrm{2}} }=\:\mathrm{3} \\ $$$${determine}\:{in}\:{terms}\:{of}\:{n}\:{the}\:{value} \\ $$$${of}. \\ $$$$\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\left({x}_{{r}} +\mathrm{1}\right)^{\mathrm{2}} \\ $$

Question Number 32977    Answers: 1   Comments: 0

Prove that ^n C_r +^n C_(r+1) =^(n+1) C_(r+1)

$${Prove}\:{that}\:\:^{{n}} {C}_{{r}} \:\:+\:^{{n}} {C}_{{r}+\mathrm{1}} \:=\:^{{n}+\mathrm{1}} {C}_{{r}+\mathrm{1}} \\ $$$$ \\ $$

Question Number 33125    Answers: 0   Comments: 0

let give u_n = ∫_0 ^π ((cos(nx)dx)/(1−2λcosx +λ^2 )) 1) prove that λ u_(n+2) −(1+λ^2 )u_(n+1) +λ u_n =0 2) ptove that Σ u_n is convergent and find its sum

$${let}\:{give}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{cos}\left({nx}\right){dx}}{\mathrm{1}−\mathrm{2}\lambda{cosx}\:+\lambda^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\lambda\:{u}_{{n}+\mathrm{2}} \:−\left(\mathrm{1}+\lambda^{\mathrm{2}} \right){u}_{{n}+\mathrm{1}} \:+\lambda\:{u}_{{n}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{ptove}\:{that}\:\Sigma\:{u}_{{n}} \:{is}\:{convergent}\:{and}\:{find}\:{its}\:{sum} \\ $$

Question Number 33124    Answers: 0   Comments: 1

find Σ_(n=1) ^∞ (1/(n(n+1)2^(n−1) )) .

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\mathrm{2}^{{n}−\mathrm{1}} }\:. \\ $$

Question Number 32971    Answers: 1   Comments: 0

If siny=xsin(a+y) show that (dy/dx)=((sina)/(1−2xcosa+x^2 ))

$${If}\:{siny}={xsin}\left({a}+{y}\right)\:{show}\:{that} \\ $$$$\frac{{dy}}{{dx}}=\frac{{sina}}{\mathrm{1}−\mathrm{2}{xcosa}+{x}^{\mathrm{2}} } \\ $$$$ \\ $$

Question Number 32968    Answers: 1   Comments: 0

Question Number 32958    Answers: 0   Comments: 1

Question Number 32954    Answers: 1   Comments: 0

log_2 x×log_4 x×log_(16) x=7 help

$$\:\boldsymbol{\mathrm{log}}_{\mathrm{2}} \boldsymbol{{x}}×\boldsymbol{\mathrm{log}}_{\mathrm{4}} \boldsymbol{{x}}×\boldsymbol{\mathrm{log}}_{\mathrm{16}} \boldsymbol{{x}}=\mathrm{7} \\ $$$$\:\boldsymbol{{help}} \\ $$

Question Number 32951    Answers: 2   Comments: 1

Evaluate ∫((x^4 +1)/(x^6 +1))dx [W.B.H.S 2018]

$${Evaluate} \\ $$$$\int\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{6}} +\mathrm{1}}{dx}\:\:\:\:\:\left[{W}.{B}.{H}.{S}\:\mathrm{2018}\right] \\ $$

Question Number 32947    Answers: 1   Comments: 0

Question Number 32946    Answers: 1   Comments: 0

Question Number 32945    Answers: 1   Comments: 0

Question Number 32939    Answers: 1   Comments: 1

1) study the convergence of ∫_0 ^1 (x^p /(1+x)) dx 2) find lim_(p→∞) ∫_0 ^1 (x^p /(1+x))dx .

$$\left.\mathrm{1}\right)\:{study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{p}} }{\mathrm{1}+{x}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{p}\rightarrow\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{p}} }{\mathrm{1}+{x}}{dx}\:. \\ $$

Question Number 32938    Answers: 0   Comments: 2

let 0<θ<π find Σ_(n=1) ^∞ ((cos(nθ))/n) 2) find Σ_(n=1) ^∞ ((sin(nθ))/n)

$${let}\:\mathrm{0}<\theta<\pi\:\:{find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{cos}\left({n}\theta\right)}{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\theta\right)}{{n}} \\ $$

Question Number 32937    Answers: 0   Comments: 0

let give ∣x∣<1 prove that Σ_(n=1) ^∞ ((sin(nθ))/n) x^n =arctan( ((xsinθ)/(1−xcosθ))) .

$${let}\:{give}\:\mid{x}\mid<\mathrm{1}\:\:{prove}\:{that} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\theta\right)}{{n}}\:{x}^{{n}} \:={arctan}\left(\:\frac{{xsin}\theta}{\mathrm{1}−{xcos}\theta}\right)\:. \\ $$

Question Number 32936    Answers: 0   Comments: 0

let give ∣x∣<1 prove that Σ_(n=1) ^∞ ((cos(nθ))/n) x^n =−(1/2)ln(1−2xcosθ+x^2 ) .

$${let}\:{give}\:\mid{x}\mid<\mathrm{1}\:{prove}\:{that} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({n}\theta\right)}{{n}}\:{x}^{{n}} \:=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}−\mathrm{2}{xcos}\theta+{x}^{\mathrm{2}} \right)\:. \\ $$

Question Number 32935    Answers: 0   Comments: 0

let give ∣x∣<1 prove that Σ_(n=1) ^∞ x^n sin(nθ) = ((x sinθ)/(1−2x cosθ +x^2 )) .

$${let}\:{give}\:\mid{x}\mid<\mathrm{1}\:\:{prove}\:{that} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}} {sin}\left({n}\theta\right)\:=\:\:\frac{{x}\:{sin}\theta}{\mathrm{1}−\mathrm{2}{x}\:{cos}\theta\:+{x}^{\mathrm{2}} }\:. \\ $$

Question Number 32934    Answers: 0   Comments: 0

let give ∣x∣<1 prove that Σ_(n=1) ^∞ x^n cos(nθ)= ((xcosθ −x^2 )/(1−2xcosθ +x^2 ))

$${let}\:{give}\:\mid{x}\mid<\mathrm{1}\:{prove}\:{that} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}} {cos}\left({n}\theta\right)=\:\frac{{xcos}\theta\:−{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{2}{xcos}\theta\:+{x}^{\mathrm{2}} } \\ $$

Question Number 32933    Answers: 0   Comments: 0

Σ u_n is a convergent serie with positif terms find the nature of Σ_(n≥1) ((√u_n )/n) and Σ_(n≥o) (u_n /(1+u_n )) .

$$\Sigma\:{u}_{{n}} \:{is}\:{a}\:{convergent}\:{serie}\:{with}\:{positif}\:{terms} \\ $$$${find}\:{the}\:{nature}\:{of}\:\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{\sqrt{{u}_{{n}} }}{{n}}\:\:{and}\:\:\:\sum_{{n}\geqslant{o}} \:\:\frac{{u}_{{n}} }{\mathrm{1}+{u}_{{n}} }\:\:. \\ $$

Question Number 32932    Answers: 0   Comments: 1

find the nature of Σ_(n=1) ^∞ (1/(nΣ_(k=1) ^n (1/k))) .

$${find}\:{the}\:{nature}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}}\:. \\ $$

Question Number 32928    Answers: 2   Comments: 2

plz help Evalute ∫_(π/3 ) ^(π/4) ((sin^2 x)/(√(1−cosx)))dx

$$\boldsymbol{{plz}}\:\boldsymbol{{help}} \\ $$$${Evalute} \\ $$$$ \\ $$$$\underset{\pi/\mathrm{3}\:} {\overset{\pi/\mathrm{4}} {\int}}\:\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\sqrt{\mathrm{1}−{cosx}}}{dx} \\ $$

Question Number 32918    Answers: 0   Comments: 1

Question Number 32914    Answers: 0   Comments: 4

Question Number 32913    Answers: 0   Comments: 0

2∧6

$$\mathrm{2}\wedge\mathrm{6} \\ $$

Question Number 32912    Answers: 1   Comments: 0

find x log(√x)=(√(logx))

$$\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}} \\ $$$$\:\boldsymbol{\mathrm{log}}\sqrt{\boldsymbol{{x}}}=\sqrt{\boldsymbol{\mathrm{log}{x}}} \\ $$

  Pg 1741      Pg 1742      Pg 1743      Pg 1744      Pg 1745      Pg 1746      Pg 1747      Pg 1748      Pg 1749      Pg 1750   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com