Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1741

Question Number 34081    Answers: 1   Comments: 0

2^n −2^(n−1) =4 .find n^(n.)

$$\mathrm{2}^{{n}} −\mathrm{2}^{{n}−\mathrm{1}} =\mathrm{4}\:.{find}\:{n}^{{n}.} \\ $$

Question Number 34066    Answers: 1   Comments: 0

show that− sin 10−(√3)sec10=4.

$$\mathrm{show}\:\mathrm{that}− \\ $$$$\mathrm{sin}\:\mathrm{10}−\sqrt{\mathrm{3}}\mathrm{sec10}=\mathrm{4}. \\ $$

Question Number 34064    Answers: 1   Comments: 0

Question Number 34056    Answers: 2   Comments: 3

x^(3z) =1 x^2 =y z=y^n FIND THE VALUE OF n please i need your help ASAP. thanks

$${x}^{\mathrm{3}{z}} =\mathrm{1}\: \\ $$$${x}^{\mathrm{2}} ={y} \\ $$$${z}={y}^{{n}} \\ $$$${FIND}\:{THE}\:{VALUE}\:{OF}\:{n} \\ $$$${please}\:{i}\:{need}\:{your}\:{help}\:{ASAP}.\:{thanks} \\ $$

Question Number 34051    Answers: 1   Comments: 0

2dy/dx+y=0 y(0)=−3

$$\mathrm{2}{dy}/{dx}+{y}=\mathrm{0}\:\:{y}\left(\mathrm{0}\right)=−\mathrm{3} \\ $$

Question Number 34044    Answers: 2   Comments: 2

what is the remainder when (111..)+(222..)+(333..)+....+(77..) is divided by 37

$${what}\:{is}\:{the}\:{remainder}\:{when}\: \\ $$$$\left(\mathrm{111}..\right)+\left(\mathrm{222}..\right)+\left(\mathrm{333}..\right)+....+\left(\mathrm{77}..\right) \\ $$$${is}\:{divided}\:{by}\:\mathrm{37} \\ $$

Question Number 34063    Answers: 1   Comments: 3

Let A= { 1,2,3,4 } . Number of functions f:A→A satisfying f(f(x))=x ∀x∈A, is ?

$$\boldsymbol{\mathrm{L}}\mathrm{et}\:\mathrm{A}=\:\left\{\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}\:\right\}\:.\:\mathrm{N}{umber}\:\mathrm{of}\:\mathrm{functions} \\ $$$$\mathrm{f}:\mathrm{A}\rightarrow{A}\:\mathrm{satisfying}\:\mathrm{f}\left(\mathrm{f}\left({x}\right)\right)={x}\:\forall{x}\in\mathrm{A},\:\mathrm{is}\:? \\ $$

Question Number 34031    Answers: 0   Comments: 0

Prove that for every positive real numbers x, y, z and xyz = 1, hold (x + y + z)^2 ((1/x^2 ) + (1/y^2 ) + (1/z^2 )) ≥ 9 + 2(x^3 + y^3 + z^3 ) + 4((1/x^3 ) + (1/y^3 ) + (1/z^3 ))

$${Prove}\:\:{that}\:\:{for}\:\:{every}\:\:{positive}\:\:{real}\:\:{numbers}\:\:{x},\:{y},\:{z}\:\:{and}\:\:\:{xyz}\:\:=\:\:\mathrm{1},\:\:{hold} \\ $$$$\left({x}\:+\:{y}\:+\:{z}\right)^{\mathrm{2}} \left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{z}^{\mathrm{2}} }\right)\:\:\geqslant\:\:\mathrm{9}\:+\:\mathrm{2}\left({x}^{\mathrm{3}} \:+\:{y}^{\mathrm{3}} \:+\:{z}^{\mathrm{3}} \right)\:+\:\mathrm{4}\left(\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{{y}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{{z}^{\mathrm{3}} }\right)\: \\ $$

Question Number 34029    Answers: 1   Comments: 1

Number of integral values of x for which ((((π/2^(tan^(−1) x) )−4)(x−4)(x−10))/(x! − (x−1)!)) < 0

$$\boldsymbol{{N}}{umber}\:{of}\:{integral}\:{values}\:{of}\:{x}\:{for} \\ $$$${which}\: \\ $$$$\frac{\left(\frac{\pi}{\mathrm{2}^{\mathrm{tan}^{−\mathrm{1}} {x}} }−\mathrm{4}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{10}\right)}{{x}!\:−\:\left({x}−\mathrm{1}\right)!}\:<\:\mathrm{0} \\ $$

Question Number 34021    Answers: 1   Comments: 2

find the value of ∫_0 ^(+∞) ((cos(αx))/((x^2 +1)( x^2 +2)(x^2 +3)))dx 2) calculate ∫_0 ^∞ (dx/((x^2 +1)(x^2 +2)(x^2 +3)))

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\:{x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)}{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)} \\ $$

Question Number 34020    Answers: 0   Comments: 1

let p(x)=cos(2n arccos(x)) with x∈[−1,1] find the roots of p(x) and factorize p(x)

$${let}\:{p}\left({x}\right)={cos}\left(\mathrm{2}{n}\:{arccos}\left({x}\right)\right)\:\:{with}\:{x}\in\left[−\mathrm{1},\mathrm{1}\right] \\ $$$${find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:{and}\:{factorize}\:\:{p}\left({x}\right) \\ $$

Question Number 34019    Answers: 0   Comments: 4

n integr decompose imsidr R[x] the fraction F(x) = (1/((x^2 −1)^n ))

$${n}\:{integr}\:{decompose}\:{imsidr}\:{R}\left[{x}\right]\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:−\mathrm{1}\right)^{{n}} } \\ $$

Question Number 34013    Answers: 0   Comments: 0

find Σ_(n=0) ^∞ ((cos((2n+1)(π/4)))/((2n+1)^2 )) .

$${find}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left(\left(\mathrm{2}{n}+\mathrm{1}\right)\frac{\pi}{\mathrm{4}}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 34011    Answers: 0   Comments: 0

calculate Σ_(n=1) ^∞ ((cos(nx))/n^2 ) and Σ_(n=1) ^∞ ((sin(nx))/n^2 )

$${calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }\:\:{and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$

Question Number 34007    Answers: 1   Comments: 0

lim_(x→2) (((√(x−2)) +(√x) −(√2))/(√(x^2 −4))) is ?

$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\sqrt{{x}−\mathrm{2}}\:+\sqrt{{x}}\:−\sqrt{\mathrm{2}}}{\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}\:\:{is}\:? \\ $$

Question Number 34005    Answers: 1   Comments: 4

((4k+1)/(k+3)),(4k+1,k+3)=(11,k+3)=1or11; I can′t understand.Who can help me?

$$\frac{\mathrm{4}{k}+\mathrm{1}}{{k}+\mathrm{3}},\left(\mathrm{4}{k}+\mathrm{1},{k}+\mathrm{3}\right)=\left(\mathrm{11},{k}+\mathrm{3}\right)=\mathrm{1}{or}\mathrm{11}; \\ $$$${I}\:{can}'{t}\:{understand}.{Who}\:{can}\:{help}\:{me}? \\ $$

Question Number 33997    Answers: 1   Comments: 0

If the range of the function f(x) = ((x−1)/(p−x^2 +1)) does not contain any values belonging to the interval [−1,((−1)/3)] then true set of values of p is ?

$$\boldsymbol{{I}}\mathrm{f}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\: \\ $$$$\mathrm{f}\left({x}\right)\:=\:\frac{{x}−\mathrm{1}}{\mathrm{p}−{x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{does}\:\mathrm{not}\:\mathrm{contain}\:\mathrm{any} \\ $$$$\mathrm{values}\:\mathrm{belonging}\:\mathrm{to}\:\mathrm{the}\:\mathrm{interval} \\ $$$$\left[−\mathrm{1},\frac{−\mathrm{1}}{\mathrm{3}}\right]\:{then}\:{true}\:{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:\mathrm{p}\:\mathrm{is}\:? \\ $$

Question Number 33990    Answers: 0   Comments: 1

let give I =∫_0 ^1 ln(x)ln(1+x)dx give I at form of serie .

$${let}\:{give}\:{I}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right){dx}\: \\ $$$${give}\:{I}\:{at}\:{form}\:{of}\:{serie}\:. \\ $$

Question Number 33989    Answers: 0   Comments: 0

let f(x)= (e^(−x) /(cosx)) , 2π periodic even developp f at fourier serie .

$${let}\:{f}\left({x}\right)=\:\frac{{e}^{−{x}} }{{cosx}}\:\:\:\:,\:\mathrm{2}\pi\:{periodic}\:{even} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$

Question Number 33988    Answers: 1   Comments: 0

give the algebric form of (1+i)^i .

$${give}\:{the}\:{algebric}\:{form}\:{of}\:\left(\mathrm{1}+{i}\right)^{{i}} . \\ $$

Question Number 33987    Answers: 0   Comments: 2

find ∫_(−∞) ^(+∞) ((cos(αx))/((1+x^2 )^3 )) dx with α≥0 .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dx}\:{with}\:\alpha\geqslant\mathrm{0}\:. \\ $$

Question Number 33986    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) ((cos(tx))/((1+x^2 )^2 )) dx with t≥0

$${find}\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({tx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$

Question Number 33985    Answers: 0   Comments: 0

prove that (1/(1+cosx)) =2Σ_(n=1) ^∞ n(−1)^(n−1) cos(nx) for x≠kπ ,k∈ Z .

$${prove}\:{that}\:\frac{\mathrm{1}}{\mathrm{1}+{cosx}}\:=\mathrm{2}\sum_{{n}=\mathrm{1}} ^{\infty} {n}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {cos}\left({nx}\right)\:{for} \\ $$$${x}\neq{k}\pi\:,{k}\in\:{Z}\:. \\ $$

Question Number 33984    Answers: 1   Comments: 1

calculate ∫_0 ^1 (1/x)ln(((1+x)/(1−x)))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{x}}{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right){dx} \\ $$

Question Number 33983    Answers: 0   Comments: 1

find ∫_(1() ^∞ (1/x)ln(((x+1)/(x−1)))dx.

$${find}\:\int_{\mathrm{1}\left(\right.} ^{\infty} \frac{\mathrm{1}}{{x}}{ln}\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right){dx}. \\ $$

Question Number 33982    Answers: 0   Comments: 0

decompose inside R[x] the fraction F(x) = (1/(x^n (x+1)^2 )) with n integr .

$${decompose}\:{inside}\:{R}\left[{x}\right]\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}^{{n}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:{with}\:{n}\:{integr}\:. \\ $$

  Pg 1736      Pg 1737      Pg 1738      Pg 1739      Pg 1740      Pg 1741      Pg 1742      Pg 1743      Pg 1744      Pg 1745   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com