Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1741
Question Number 34081 Answers: 1 Comments: 0
$$\mathrm{2}^{{n}} −\mathrm{2}^{{n}−\mathrm{1}} =\mathrm{4}\:.{find}\:{n}^{{n}.} \\ $$
Question Number 34066 Answers: 1 Comments: 0
$$\mathrm{show}\:\mathrm{that}− \\ $$$$\mathrm{sin}\:\mathrm{10}−\sqrt{\mathrm{3}}\mathrm{sec10}=\mathrm{4}. \\ $$
Question Number 34064 Answers: 1 Comments: 0
Question Number 34056 Answers: 2 Comments: 3
$${x}^{\mathrm{3}{z}} =\mathrm{1}\: \\ $$$${x}^{\mathrm{2}} ={y} \\ $$$${z}={y}^{{n}} \\ $$$${FIND}\:{THE}\:{VALUE}\:{OF}\:{n} \\ $$$${please}\:{i}\:{need}\:{your}\:{help}\:{ASAP}.\:{thanks} \\ $$
Question Number 34051 Answers: 1 Comments: 0
$$\mathrm{2}{dy}/{dx}+{y}=\mathrm{0}\:\:{y}\left(\mathrm{0}\right)=−\mathrm{3} \\ $$
Question Number 34044 Answers: 2 Comments: 2
$${what}\:{is}\:{the}\:{remainder}\:{when}\: \\ $$$$\left(\mathrm{111}..\right)+\left(\mathrm{222}..\right)+\left(\mathrm{333}..\right)+....+\left(\mathrm{77}..\right) \\ $$$${is}\:{divided}\:{by}\:\mathrm{37} \\ $$
Question Number 34063 Answers: 1 Comments: 3
$$\boldsymbol{\mathrm{L}}\mathrm{et}\:\mathrm{A}=\:\left\{\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}\:\right\}\:.\:\mathrm{N}{umber}\:\mathrm{of}\:\mathrm{functions} \\ $$$$\mathrm{f}:\mathrm{A}\rightarrow{A}\:\mathrm{satisfying}\:\mathrm{f}\left(\mathrm{f}\left({x}\right)\right)={x}\:\forall{x}\in\mathrm{A},\:\mathrm{is}\:? \\ $$
Question Number 34031 Answers: 0 Comments: 0
$${Prove}\:\:{that}\:\:{for}\:\:{every}\:\:{positive}\:\:{real}\:\:{numbers}\:\:{x},\:{y},\:{z}\:\:{and}\:\:\:{xyz}\:\:=\:\:\mathrm{1},\:\:{hold} \\ $$$$\left({x}\:+\:{y}\:+\:{z}\right)^{\mathrm{2}} \left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{z}^{\mathrm{2}} }\right)\:\:\geqslant\:\:\mathrm{9}\:+\:\mathrm{2}\left({x}^{\mathrm{3}} \:+\:{y}^{\mathrm{3}} \:+\:{z}^{\mathrm{3}} \right)\:+\:\mathrm{4}\left(\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{{y}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{{z}^{\mathrm{3}} }\right)\: \\ $$
Question Number 34029 Answers: 1 Comments: 1
$$\boldsymbol{{N}}{umber}\:{of}\:{integral}\:{values}\:{of}\:{x}\:{for} \\ $$$${which}\: \\ $$$$\frac{\left(\frac{\pi}{\mathrm{2}^{\mathrm{tan}^{−\mathrm{1}} {x}} }−\mathrm{4}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{10}\right)}{{x}!\:−\:\left({x}−\mathrm{1}\right)!}\:<\:\mathrm{0} \\ $$
Question Number 34021 Answers: 1 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\:{x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)}{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)} \\ $$
Question Number 34020 Answers: 0 Comments: 1
$${let}\:{p}\left({x}\right)={cos}\left(\mathrm{2}{n}\:{arccos}\left({x}\right)\right)\:\:{with}\:{x}\in\left[−\mathrm{1},\mathrm{1}\right] \\ $$$${find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:{and}\:{factorize}\:\:{p}\left({x}\right) \\ $$
Question Number 34019 Answers: 0 Comments: 4
$${n}\:{integr}\:{decompose}\:{imsidr}\:{R}\left[{x}\right]\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:−\mathrm{1}\right)^{{n}} } \\ $$
Question Number 34013 Answers: 0 Comments: 0
$${find}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left(\left(\mathrm{2}{n}+\mathrm{1}\right)\frac{\pi}{\mathrm{4}}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$
Question Number 34011 Answers: 0 Comments: 0
$${calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }\:\:{and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$
Question Number 34007 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\sqrt{{x}−\mathrm{2}}\:+\sqrt{{x}}\:−\sqrt{\mathrm{2}}}{\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}\:\:{is}\:? \\ $$
Question Number 34005 Answers: 1 Comments: 4
$$\frac{\mathrm{4}{k}+\mathrm{1}}{{k}+\mathrm{3}},\left(\mathrm{4}{k}+\mathrm{1},{k}+\mathrm{3}\right)=\left(\mathrm{11},{k}+\mathrm{3}\right)=\mathrm{1}{or}\mathrm{11}; \\ $$$${I}\:{can}'{t}\:{understand}.{Who}\:{can}\:{help}\:{me}? \\ $$
Question Number 33997 Answers: 1 Comments: 0
$$\boldsymbol{{I}}\mathrm{f}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\: \\ $$$$\mathrm{f}\left({x}\right)\:=\:\frac{{x}−\mathrm{1}}{\mathrm{p}−{x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{does}\:\mathrm{not}\:\mathrm{contain}\:\mathrm{any} \\ $$$$\mathrm{values}\:\mathrm{belonging}\:\mathrm{to}\:\mathrm{the}\:\mathrm{interval} \\ $$$$\left[−\mathrm{1},\frac{−\mathrm{1}}{\mathrm{3}}\right]\:{then}\:{true}\:{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:\mathrm{p}\:\mathrm{is}\:? \\ $$
Question Number 33990 Answers: 0 Comments: 1
$${let}\:{give}\:{I}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right){dx}\: \\ $$$${give}\:{I}\:{at}\:{form}\:{of}\:{serie}\:. \\ $$
Question Number 33989 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:\frac{{e}^{−{x}} }{{cosx}}\:\:\:\:,\:\mathrm{2}\pi\:{periodic}\:{even} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$
Question Number 33988 Answers: 1 Comments: 0
$${give}\:{the}\:{algebric}\:{form}\:{of}\:\left(\mathrm{1}+{i}\right)^{{i}} . \\ $$
Question Number 33987 Answers: 0 Comments: 2
$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dx}\:{with}\:\alpha\geqslant\mathrm{0}\:. \\ $$
Question Number 33986 Answers: 0 Comments: 1
$${find}\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({tx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$
Question Number 33985 Answers: 0 Comments: 0
$${prove}\:{that}\:\frac{\mathrm{1}}{\mathrm{1}+{cosx}}\:=\mathrm{2}\sum_{{n}=\mathrm{1}} ^{\infty} {n}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {cos}\left({nx}\right)\:{for} \\ $$$${x}\neq{k}\pi\:,{k}\in\:{Z}\:. \\ $$
Question Number 33984 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{x}}{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right){dx} \\ $$
Question Number 33983 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{1}\left(\right.} ^{\infty} \frac{\mathrm{1}}{{x}}{ln}\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right){dx}. \\ $$
Question Number 33982 Answers: 0 Comments: 0
$${decompose}\:{inside}\:{R}\left[{x}\right]\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}^{{n}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:{with}\:{n}\:{integr}\:. \\ $$
Pg 1736 Pg 1737 Pg 1738 Pg 1739 Pg 1740 Pg 1741 Pg 1742 Pg 1743 Pg 1744 Pg 1745
Terms of Service
Privacy Policy
Contact: info@tinkutara.com