Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1739

Question Number 34533    Answers: 2   Comments: 5

Solve for x : 5 log_4 x + 48 log_x 4 = (x/8)

$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x}\::\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}\:\mathrm{log}_{\mathrm{4}} \mathrm{x}\:\:\:+\:\:\:\mathrm{48}\:\mathrm{log}_{\mathrm{x}} \mathrm{4}\:\:\:\:=\:\:\:\:\frac{\mathrm{x}}{\mathrm{8}} \\ $$

Question Number 34528    Answers: 1   Comments: 1

Find radius c in terms of radii a and b.

$${Find}\:{radius}\:{c}\:{in}\:{terms}\:{of}\:{radii} \\ $$$${a}\:{and}\:{b}. \\ $$

Question Number 34522    Answers: 0   Comments: 2

lim_(x→0) log _e {((sin (a+(1/x)))/(sin a))}^x , 0<a<(π/2) .

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{log}\:_{{e}} \left\{\frac{\mathrm{sin}\:\left({a}+\frac{\mathrm{1}}{{x}}\right)}{\mathrm{sin}\:{a}}\right\}^{{x}} ,\:\mathrm{0}<{a}<\frac{\pi}{\mathrm{2}}\:. \\ $$

Question Number 34516    Answers: 2   Comments: 1

lim_(x→0) log _(tan^2 x) (tan^2 2x) = ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{log}\:_{\mathrm{tan}\:^{\mathrm{2}} {x}} \left(\mathrm{tan}\:^{\mathrm{2}} \mathrm{2}{x}\right)\:=\:? \\ $$

Question Number 34504    Answers: 1   Comments: 1

1−(1/2)+(1/3)−(1/5)+.... find the sum of the series

$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{5}}+.... \\ $$$${find}\:{the}\:{sum}\:{of}\:{the}\:{series} \\ $$

Question Number 34501    Answers: 1   Comments: 1

Question Number 34500    Answers: 0   Comments: 1

prove tan^(−1) ((1/2)tan2A)+tan^(−1) (cotA)+tan^(−1) (cot^3 A)=0

$${prove} \\ $$$${t}\mathrm{an}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}{tan}\mathrm{2}{A}\right)+\mathrm{tan}^{−\mathrm{1}} \left({cotA}\right)+\mathrm{tan}^{−\mathrm{1}} \left({cot}^{\mathrm{3}} {A}\right)=\mathrm{0} \\ $$

Question Number 34499    Answers: 1   Comments: 0

solve the equation cosh(lnx)−sinh(ln(x/2))=1(3/4)

$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equation}} \\ $$$$\boldsymbol{\mathrm{cosh}}\left(\boldsymbol{\mathrm{ln}{x}}\right)−\boldsymbol{\mathrm{sinh}}\left(\boldsymbol{\mathrm{ln}}\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)=\mathrm{1}\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Question Number 34485    Answers: 1   Comments: 0

is there a function such that: ∀x≥0;f(x+T_1 )=f(x) ∀x≤0;f(x−T_2 )=f(x) f is diferentiabre in x=0

$$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{function}\:\mathrm{such}\:\mathrm{that}: \\ $$$$\forall{x}\geqslant\mathrm{0};{f}\left({x}+{T}_{\mathrm{1}} \right)={f}\left({x}\right) \\ $$$$\forall{x}\leqslant\mathrm{0};{f}\left({x}−{T}_{\mathrm{2}} \right)={f}\left({x}\right) \\ $$$${f}\:\mathrm{is}\:\mathrm{diferentiabre}\:\mathrm{in}\:{x}=\mathrm{0} \\ $$

Question Number 34464    Answers: 1   Comments: 0

Evaluate lim_(x→0^+ ) x^(m ) (log x )^n , m,n ∈ N

$$\boldsymbol{{E}}{valuate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:{x}^{{m}\:} \left({log}\:{x}\:\right)^{{n}} \:,\:{m},{n}\:\in\:\mathbb{N} \\ $$

Question Number 34458    Answers: 2   Comments: 4

lim_(x→0) ((sin x −sin (sin x))/x^3 ) = ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}\:−\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)}{{x}^{\mathrm{3}} }\:=\:? \\ $$

Question Number 34446    Answers: 0   Comments: 1

∫_(−π/2) ^(π/2) sin {log (x+(√(x^2 +1)) )} dx =

$$\:\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\:\mathrm{sin}\:\left\{\mathrm{log}\:\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:\right)\right\}\:{dx}\:= \\ $$

Question Number 34445    Answers: 0   Comments: 1

A1) Events A and B are such that P(A) = (9/(30)), P(B)= (2/5) and P(A ∪ B) = (4/5) find a) P(A ∩ B) b) P(A∣B) c) P(B^ ) 2) A bag contains 3 black balls and 5 white balls. Two balls selected are random without replacement.Find the probability a) of selecting a black and white ball in order b) that the balls are of different colours c) the second ball is white

$$\left.\:{A}\mathrm{1}\right)\:\mathrm{Events}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:{P}\left({A}\right)\:=\:\frac{\mathrm{9}}{\mathrm{30}},\:{P}\left(\boldsymbol{{B}}\right)=\:\frac{\mathrm{2}}{\mathrm{5}}\:{and}\: \\ $$$${P}\left({A}\:\cup\:{B}\right)\:=\:\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\left.{find}\:{a}\right)\:{P}\left({A}\:\cap\:{B}\right) \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:{b}\right)\:{P}\left({A}\mid{B}\right) \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:{c}\right)\:{P}\left(\bar {{B}}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{A}\:\mathrm{bag}\:\mathrm{contains}\:\mathrm{3}\:\mathrm{black}\:\mathrm{balls}\:\mathrm{and} \\ $$$$\mathrm{5}\:\mathrm{white}\:\mathrm{balls}.\:\mathrm{Two}\:\mathrm{balls}\:\mathrm{selected}\:\mathrm{are} \\ $$$$\mathrm{random}\:\mathrm{without}\:\mathrm{replacement}.\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{probability} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:{a}\right)\:{of}\:{selecting}\:{a}\:{black}\:{and}\:{white} \\ $$$${ball}\:{in}\:{order} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:{b}\right)\:{that}\:{the}\:{balls}\:{are}\:{of}\:{different}\:{colours} \\ $$$$\left.\:\:\:\:\:\:\:\:{c}\right)\:{the}\:{second}\:{ball}\:{is}\:{white}\: \\ $$

Question Number 34439    Answers: 1   Comments: 0

lim_(x→∞) (−1)^(x−1) sin (π(√(x^2 +0.5x+1))), where x∈N.

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(−\mathrm{1}\right)^{{x}−\mathrm{1}} \mathrm{sin}\:\left(\pi\sqrt{{x}^{\mathrm{2}} +\mathrm{0}.\mathrm{5}{x}+\mathrm{1}}\right), \\ $$$${where}\:{x}\in\mathbb{N}. \\ $$

Question Number 34438    Answers: 0   Comments: 0

Question Number 34985    Answers: 1   Comments: 0

Question Number 34433    Answers: 1   Comments: 1

find lim_(n→+∞) (1/n)Σ_(k=1) ^(n−1) (√((n+k)/(n−k)))

$${find}\:{lim}_{{n}\rightarrow+\infty} \frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\sqrt{\frac{{n}+{k}}{{n}−{k}}} \\ $$

Question Number 34429    Answers: 2   Comments: 0

Prove that 3^m +3^n +1 is not a perfect square. where m and n are positive integers.

$${Prove}\:{that} \\ $$$$\mathrm{3}^{{m}} +\mathrm{3}^{{n}} +\mathrm{1}\:{is}\:{not}\:{a}\:{perfect}\:{square}. \\ $$$${where}\:{m}\:{and}\:{n}\:{are}\:{positive}\:{integers}. \\ $$

Question Number 34422    Answers: 2   Comments: 0

Show that ((1+x)/(1+(√(1+x)) )) +((1−x)/(1−(√(1−x )))) =1 when x=((√(3 ))/2)

$${Show}\:{that} \\ $$$$\frac{\mathrm{1}+{x}}{\mathrm{1}+\sqrt{\mathrm{1}+{x}}\:}\:+\frac{\mathrm{1}−{x}}{\mathrm{1}−\sqrt{\mathrm{1}−{x}\:}}\:=\mathrm{1}\:{when}\:{x}=\frac{\sqrt{\mathrm{3}\:}}{\mathrm{2}} \\ $$

Question Number 34420    Answers: 1   Comments: 1

let A = arctanx −arctany give another form of A if xy≠−1 .

$${let}\:{A}\:\:=\:{arctanx}\:−{arctany} \\ $$$${give}\:{another}\:{form}\:{of}\:{A}\:{if}\:\:{xy}\neq−\mathrm{1}\:. \\ $$

Question Number 34421    Answers: 0   Comments: 1

let A = ∫_(−∞) ^(+∞) (dx/(x^2 −j)) with j=e^(i((2π)/3)) extract ReA and Im(A) and calculste its values.

$${let}\:{A}\:\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:−{j}}\:\:\:\:{with}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$${extract}\:\:{ReA}\:{and}\:{Im}\left({A}\right)\:{and}\:{calculste}\:{its}\:{values}. \\ $$

Question Number 34411    Answers: 0   Comments: 5

Question Number 34410    Answers: 0   Comments: 0

Prove that (((n^2 )!)/((n!)^(n+1) )) is always an integer for n∈N.

$${Prove}\:{that}\:\frac{\left({n}^{\mathrm{2}} \right)!}{\left({n}!\right)^{{n}+\mathrm{1}} }\:{is}\:{always}\:{an}\:{integer} \\ $$$${for}\:{n}\in{N}. \\ $$

Question Number 34408    Answers: 0   Comments: 1

what is the value of (√(5(√(5(√(5(√(5(√(5(√5))))))))))) ignoring 64.

$${what}\:{is}\:{the}\:{value}\:{of}\: \\ $$$$\:\sqrt{\mathrm{5}\sqrt{\mathrm{5}\sqrt{\mathrm{5}\sqrt{\mathrm{5}\sqrt{\mathrm{5}\sqrt{\mathrm{5}}}}}}} \\ $$$${ignoring}\:\mathrm{64}. \\ $$

Question Number 34385    Answers: 0   Comments: 0

p,q∈P m,n∈{0,1,2,...} How many pairs are there,whose LCM is p^m q^(n ) ,when: (i)(a,b) & (b,a) are considered same. (ii)(a,b) & (b,a) are considered different. (Generalization of Q# 34358)

$$\mathrm{p},\mathrm{q}\in\mathbb{P} \\ $$$$\mathrm{m},\mathrm{n}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},...\right\} \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{pairs}\:\mathrm{are}\:\mathrm{there},\mathrm{whose} \\ $$$$\mathrm{LCM}\:\mathrm{is}\:\mathrm{p}^{\mathrm{m}} \mathrm{q}^{\mathrm{n}\:} ,\mathrm{when}: \\ $$$$\left(\mathrm{i}\right)\left(\mathrm{a},\mathrm{b}\right)\:\&\:\left(\mathrm{b},\mathrm{a}\right)\:\mathrm{are}\:\mathrm{considered}\:\mathrm{same}. \\ $$$$\left(\mathrm{ii}\right)\left(\mathrm{a},\mathrm{b}\right)\:\&\:\left(\mathrm{b},\mathrm{a}\right)\:\mathrm{are}\:\mathrm{considered}\:\mathrm{different}. \\ $$$$\:\:\:\:\left(\mathrm{Generalization}\:\mathrm{of}\:\mathrm{Q}#\:\mathrm{34358}\right) \\ $$

Question Number 34382    Answers: 1   Comments: 0

how do i prove ∫_o ^t cos 2(ωt+α)dt=0

$$\mathrm{how}\:\mathrm{do}\:\mathrm{i}\:\mathrm{prove} \\ $$$$\int_{\mathrm{o}} ^{\mathrm{t}} \mathrm{cos}\:\mathrm{2}\left(\omega\mathrm{t}+\alpha\right)\mathrm{dt}=\mathrm{0} \\ $$

  Pg 1734      Pg 1735      Pg 1736      Pg 1737      Pg 1738      Pg 1739      Pg 1740      Pg 1741      Pg 1742      Pg 1743   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com