Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1739
Question Number 28987 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dt}}{\left({a}+{bcost}\right)^{\mathrm{2}} }.{with}\:\:{a}>{b}>\mathrm{0}\:. \\ $$
Question Number 28986 Answers: 0 Comments: 0
$${let}\:{give}\:{a}>\mathrm{1}\:\:{find}\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dt}}{{a}+{cost}}\:. \\ $$
Question Number 28985 Answers: 0 Comments: 0
$${let}\:{give}\:{I}_{{m},{a}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({mx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}{dx} \\ $$$$\left.\mathrm{1}\right){verify}\:{that}\:{I}_{{m},\mathrm{1}} ={lim}_{{a}\rightarrow\mathrm{1}} \:{I}_{{m},{a}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sin}\left({mx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 28984 Answers: 0 Comments: 0
$${find}\:{F}\left(\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{4}} }\right)\:{F}\:{means}\:{fourier}\:{transform}. \\ $$
Question Number 28983 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\:\frac{{sinx}}{{x}}{dx}. \\ $$
Question Number 28982 Answers: 0 Comments: 0
$${fnd}\:{the}\:{value}\:{of}\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{n}^{\mathrm{2}} +\mathrm{1}}{{n}^{\mathrm{2}} }\:\:. \\ $$
Question Number 28981 Answers: 1 Comments: 1
$${find}\:{the}\:{values}\:{of}\:\prod_{{n}=\mathrm{2}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}\right)\:. \\ $$
Question Number 28980 Answers: 0 Comments: 0
$${prove}\:{that}\:{sin}\left(\pi{z}\right)=\pi{z}\:\prod_{{k}=\mathrm{1}} ^{\infty} \left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{k}^{\mathrm{2}} }\right)\:\:{zfromC}. \\ $$
Question Number 29012 Answers: 0 Comments: 1
Question Number 28978 Answers: 0 Comments: 0
$${let}\:{give}\:{p}\:{from}\:{R}\:{study}\:{the}\:{convergence}\:{of} \\ $$$$\prod_{{k}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}+{k}^{−{p}} \right)\:. \\ $$
Question Number 28977 Answers: 0 Comments: 0
$${let}\:{give}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{a}_{{k}} ^{\mathrm{2}} \:\:\:\:\:{with}\:\left({a}_{{k}} \right)\:{sequence}\:{of}\:{reals}/{a}_{{k}>\mathrm{0}} \\ $$$${and}\:{v}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{a}_{{k}} }{{k}}\:.\:{prove}\:{that}\:{u}_{{n}} {converges}\Rightarrow\left({v}_{{n}} \right){converges} \\ $$
Question Number 28976 Answers: 0 Comments: 0
$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cosx}}{{e}^{{x}} +{e}^{−{x}} }{dx}. \\ $$
Question Number 28975 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{7}} }{dx}. \\ $$
Question Number 28960 Answers: 1 Comments: 1
Question Number 28954 Answers: 0 Comments: 0
$${please}\:{solve}\:\mathrm{4},\mathrm{5},\mathrm{6} \\ $$$$ \\ $$
Question Number 28953 Answers: 0 Comments: 0
Question Number 28952 Answers: 0 Comments: 0
Question Number 28949 Answers: 0 Comments: 0
$${xy}\frac{{x}^{\mathrm{4}} −{y}^{\mathrm{4}} }{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }\:\:{and}\:\mathrm{0}\:{for}\:{origin} \\ $$$${then}\:{funtion}\:{is} \\ $$$$\mathrm{1}.{continuous} \\ $$$$\mathrm{2}.{mixpartial}\:{are}\:{not}\:{equal}\:{at}\:{origin} \\ $$$$\mathrm{3}.{limit}\:{at}\:{origin}\:{is}\:\mathrm{1} \\ $$
Question Number 28938 Answers: 0 Comments: 3
Question Number 28932 Answers: 1 Comments: 0
$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{least}\:\mathrm{number}\:\mathrm{of}\:\mathrm{4}\:\mathrm{digits}, \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{perfect}\:\mathrm{square}. \\ $$$$\mathrm{Method}\:\mathrm{of}\:\mathrm{finding}\:\mathrm{is}\:\boldsymbol{\mathrm{required}}. \\ $$
Question Number 28929 Answers: 1 Comments: 0
$${If}\:{T}=\mathrm{2}\pi\left(\frac{{L}}{{g}}\right)^{\frac{\mathrm{1}}{\mathrm{2}\:}} \:{and} \\ $$$${L}=\mathrm{100}\pm\mathrm{0}.\mathrm{1}\:{cm}\left({limit}\:{standard}\:\right. \\ $$$$\left.{error}\right) \\ $$$${T}=\mathrm{2}.\mathrm{01}\pm\mathrm{0}.\mathrm{01}\:{s}\:\left({limit}\:{standard}\right. \\ $$$$\left.{error}\right) \\ $$$${Calculate}\:{the}\:{value}\:{of}\:{g}\:{and}\:{its} \\ $$$${standard}\:{error}. \\ $$
Question Number 28930 Answers: 0 Comments: 1
Question Number 28921 Answers: 1 Comments: 0
Question Number 28940 Answers: 1 Comments: 1
Question Number 28911 Answers: 1 Comments: 1
Question Number 28903 Answers: 0 Comments: 1
Pg 1734 Pg 1735 Pg 1736 Pg 1737 Pg 1738 Pg 1739 Pg 1740 Pg 1741 Pg 1742 Pg 1743
Terms of Service
Privacy Policy
Contact: info@tinkutara.com