Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1739

Question Number 33888    Answers: 0   Comments: 0

developp at integr serie f(x)= ∫_0 ^(π/2) (dt/(√(1−x^2 sin^2 t))) . with ∣x∣<1 .

$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {sin}^{\mathrm{2}} {t}}}\:. \\ $$$${with}\:\mid{x}\mid<\mathrm{1}\:. \\ $$

Question Number 33887    Answers: 0   Comments: 0

find the value of Σ_(n=0) ^∞ (((−1)^n )/(4n+1)) .

$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}+\mathrm{1}}\:. \\ $$

Question Number 33886    Answers: 0   Comments: 1

find the value of Σ_(n=0) ^∞ (((−1)^n )/(2n+3)).

$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{3}}. \\ $$

Question Number 33885    Answers: 0   Comments: 1

developp at integr serie f(x)= ∫_0 ^x sin(t^2 )dt .

$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} {sin}\left({t}^{\mathrm{2}} \right){dt}\:. \\ $$

Question Number 33884    Answers: 0   Comments: 1

let F(x)= ∫_0 ^(π/2) ((arctan(xtant))/(tant)) dt find a simple form of f(x) . 2) find the value of ∫_0 ^(π/2) ((arctan(2tant))/(tant))dt .

$${let}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{arctan}\left({xtant}\right)}{{tant}}\:{dt}\:{find}\:{a}\:{simple} \\ $$$${form}\:{of}\:{f}\left({x}\right)\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{arctan}\left(\mathrm{2}{tant}\right)}{{tant}}{dt}\:. \\ $$

Question Number 33883    Answers: 0   Comments: 1

find a simple form of f(x)=∫_0 ^(π/2) ln(1+xsin^2 t)dt with ∣x∣<1.

$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xsin}^{\mathrm{2}} {t}\right){dt} \\ $$$${with}\:\mid{x}\mid<\mathrm{1}. \\ $$

Question Number 33867    Answers: 1   Comments: 0

Given A(t) is an area bounded between y = x^2 + tx and x−axis, 0 < t < 2 Find the propability we choose t so (1/(48)) ≤ A(t) ≤ (1/(16))

$$\mathrm{Given}\:{A}\left({t}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{between}\: \\ $$$${y}\:=\:{x}^{\mathrm{2}} \:+\:{tx}\:\mathrm{and}\:\mathrm{x}−\mathrm{axis},\:\:\mathrm{0}\:<\:{t}\:<\:\mathrm{2} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{propability}\:\mathrm{we}\:\mathrm{choose}\:{t} \\ $$$$\mathrm{so}\:\frac{\mathrm{1}}{\mathrm{48}}\:\leqslant\:{A}\left({t}\right)\:\leqslant\:\frac{\mathrm{1}}{\mathrm{16}} \\ $$

Question Number 33865    Answers: 0   Comments: 2

evaluate lim_(x→∞) π (((aπ)^x )/(x!))

$${evaluate} \\ $$$$\:{li}\underset{{x}\rightarrow\infty} {{m}}\:\:\:\pi\:\frac{\left({a}\pi\right)^{{x}} }{{x}!} \\ $$

Question Number 33880    Answers: 1   Comments: 1

Question Number 33860    Answers: 0   Comments: 0

(√([x+3x]×4)) =( determinant (((2 4 5)),((3 5 7))))

$$\sqrt{\left[{x}+\mathrm{3}{x}\right]×\mathrm{4}}\:\:=\left(\begin{vmatrix}{\mathrm{2}\:\:\:\:\mathrm{4}\:\:\:\mathrm{5}}\\{\mathrm{3}\:\:\:\:\mathrm{5}\:\:\:\:\mathrm{7}}\end{vmatrix}\right) \\ $$

Question Number 33848    Answers: 0   Comments: 0

let w_n = (H_n ^2 /n) with H_n =Σ_(k=1) ^n (1/k) study the convergence of Σ_(n=1) ^∞ w_n x^n .

$${let}\:{w}_{{n}} =\:\frac{{H}_{{n}} ^{\mathrm{2}} }{{n}}\:\:\:{with}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$${study}\:{the}\:{convergence}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{w}_{{n}} {x}^{{n}} \:\:. \\ $$

Question Number 33847    Answers: 0   Comments: 1

let give a sequence of real numbets positif (a_i )_(1≤i≤n) 1) prove that (Σ_(i=1) ^n a_i )^2 ≤ n Σ_(i=1) ^n a_i ^2 2)let put H_n =Σ_(k=1) ^n (1/k) and w_n = (H_n ^2 /n) prove that the sequence w_n is convergent .

$$\:{let}\:{give}\:{a}\:{sequence}\:{of}\:{real}\:{numbets}\:{positif} \\ $$$$\left({a}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\left(\sum_{{i}=\mathrm{1}} ^{{n}} \:{a}_{{i}} \right)^{\mathrm{2}} \leqslant\:{n}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:{a}_{{i}} ^{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){let}\:{put}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:\:{and}\:{w}_{{n}} =\:\frac{{H}_{{n}} ^{\mathrm{2}} }{{n}} \\ $$$${prove}\:{that}\:{the}\:{sequence}\:{w}_{{n}} \:{is}\:{convergent}\:. \\ $$

Question Number 33846    Answers: 0   Comments: 1

find radous of conbergence for theserie Σ_(n≥0) x^(n!) .

$${find}\:{radous}\:{of}\:{conbergence}\:{for}\:{theserie}\:\sum_{{n}\geqslant\mathrm{0}} {x}^{{n}!} .\: \\ $$

Question Number 33845    Answers: 0   Comments: 1

let I_n = ∫_0 ^1 ((arctan(1 +n))/(√(1+x^n ))) find lim_(n→+∞) I_n .

$${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left(\mathrm{1}\:+{n}\right)}{\sqrt{\mathrm{1}+{x}^{{n}} }}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} \:. \\ $$

Question Number 33844    Answers: 0   Comments: 0

developp f(x)=e^(−cosx) at integr serie .

$${developp}\:{f}\left({x}\right)={e}^{−{cosx}} \:{at}\:{integr}\:{serie}\:. \\ $$

Question Number 33843    Answers: 0   Comments: 2

decompose inside R(x) the fraction F(x)= (1/((x+3)^n (x+1))) with n integr .

$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\left({x}+\mathrm{3}\right)^{{n}} \:\left({x}+\mathrm{1}\right)}\:{with}\:{n}\:{integr}\:. \\ $$

Question Number 33838    Answers: 1   Comments: 0

Find the values of k if ((x^2 +3x−4)/(5x−k)) may be capable of taking on all values when x is real.

$${Find}\:{the}\:{values}\:{of}\:{k}\:{if}\:\frac{{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{4}}{\mathrm{5}{x}−{k}}\: \\ $$$${may}\:{be}\:{capable}\:{of}\:{taking}\:{on}\:{all} \\ $$$${values}\:{when}\:{x}\:{is}\:{real}. \\ $$

Question Number 33837    Answers: 2   Comments: 0

find y if ∣((y−3)/(y+1))∣<2 i mean modulus by ∣

$${find}\:{y}\:{if}\:\mid\frac{{y}−\mathrm{3}}{{y}+\mathrm{1}}\mid<\mathrm{2} \\ $$$$ \\ $$$${i}\:{mean}\:{modulus}\:{by}\:\mid \\ $$

Question Number 33836    Answers: 2   Comments: 0

for what values of x if ((x(x−1))/(2x+3))>0

$${for}\:{what}\:{values}\:{of}\:{x}\:{if} \\ $$$$\frac{{x}\left({x}−\mathrm{1}\right)}{\mathrm{2}{x}+\mathrm{3}}>\mathrm{0} \\ $$

Question Number 33835    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) ((cos(πx))/((x^2 +1+i)^2 )) dx

$${find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left(\pi{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}+{i}\right)^{\mathrm{2}} }\:{dx} \\ $$

Question Number 33834    Answers: 0   Comments: 0

P(x)=x^n +a_(n−1) x^(n−1) +.... a_1 x+a_0 be a polynomial with all the real roots, prove that (n−1)a_(n−1) ^2 ≥ 2na_(n−2) .

$${P}\left({x}\right)={x}^{{n}} +{a}_{{n}−\mathrm{1}} {x}^{{n}−\mathrm{1}} +....\:{a}_{\mathrm{1}} {x}+{a}_{\mathrm{0}} \:\:\:{be}\:{a}\:{polynomial}\:{with}\:{all}\:{the}\:{real}\:{roots}, \\ $$$${prove}\:{that}\:\:\:\:\:\:\:\:\:\left({n}−\mathrm{1}\right){a}_{{n}−\mathrm{1}} ^{\mathrm{2}} \:\geqslant\:\mathrm{2}{na}_{{n}−\mathrm{2}} \:\:. \\ $$

Question Number 33825    Answers: 0   Comments: 0

Question Number 33822    Answers: 0   Comments: 1

The following table shows the distributuons of 100 families according to their expenditure per week. The mode is given to be 24. ∣((expenditure)/(Number of families))∣((10−20)/x)∣((20−30)/(27))∣((30−40)/y)∣((40−50)/(15))∣ (a) calculate the missing frequency (b)calculate the mean (c)calculate the median

$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{following}}\:\boldsymbol{\mathrm{table}}\:\boldsymbol{\mathrm{shows}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{distributuons}}\:\boldsymbol{\mathrm{of}}\:\mathrm{100}\:\boldsymbol{\mathrm{families}}\:\boldsymbol{\mathrm{according}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{their}}\:\boldsymbol{\mathrm{expenditure}}\:\boldsymbol{\mathrm{per}}\:\boldsymbol{\mathrm{week}}. \\ $$$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{mode}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{be}}\:\mathrm{24}. \\ $$$$\mid\frac{\boldsymbol{\mathrm{expenditure}}}{\boldsymbol{\mathrm{Number}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{families}}}\mid\frac{\mathrm{10}−\mathrm{20}}{\mathrm{x}}\mid\frac{\mathrm{20}−\mathrm{30}}{\mathrm{27}}\mid\frac{\mathrm{30}−\mathrm{40}}{\boldsymbol{\mathrm{y}}}\mid\frac{\mathrm{40}−\mathrm{50}}{\mathrm{15}}\mid \\ $$$$\left(\boldsymbol{\mathrm{a}}\right)\:\boldsymbol{\mathrm{calculate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{missing}}\:\boldsymbol{\mathrm{frequency}} \\ $$$$\left(\boldsymbol{\mathrm{b}}\right)\boldsymbol{\mathrm{calculate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{mean}} \\ $$$$\left(\boldsymbol{\mathrm{c}}\right)\boldsymbol{\mathrm{calculate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{median}} \\ $$

Question Number 33819    Answers: 0   Comments: 0

given a=3i−4j+2k b=−2i+j−3k find (i) v=a+b (ii)v into position vector (iii)unit vector of v

$$\boldsymbol{\mathrm{given}}\:\:\:\boldsymbol{\mathrm{a}}=\mathrm{3}\boldsymbol{\mathrm{i}}−\mathrm{4}\boldsymbol{\mathrm{j}}+\mathrm{2}\boldsymbol{\mathrm{k}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{b}}=−\mathrm{2}\boldsymbol{\mathrm{i}}+\boldsymbol{\mathrm{j}}−\mathrm{3}\boldsymbol{\mathrm{k}} \\ $$$$\boldsymbol{\mathrm{find}}\:\:\:\left(\boldsymbol{\mathrm{i}}\right)\:\boldsymbol{\mathrm{v}}=\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{v}}\:\boldsymbol{\mathrm{into}}\:\boldsymbol{\mathrm{position}}\:\boldsymbol{\mathrm{vector}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{iii}}\right)\boldsymbol{\mathrm{unit}}\:\boldsymbol{\mathrm{vector}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{v}} \\ $$

Question Number 33818    Answers: 1   Comments: 0

Let f:R → [ 1, ∞) be defined as f(x) = log_(10) ((√(3x^2 −4x+k+1)) +10 ). If f(x) is surjective , then find the value of k ?

$$\boldsymbol{{L}}{et}\:{f}:\boldsymbol{{R}}\:\rightarrow\:\left[\:\mathrm{1},\:\infty\right)\:{be}\:{defined}\:{as}\: \\ $$$${f}\left({x}\right)\:=\:\mathrm{log}_{\mathrm{10}} \:\left(\sqrt{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\boldsymbol{{k}}+\mathrm{1}}\:+\mathrm{10}\:\right). \\ $$$$\boldsymbol{{I}}{f}\:{f}\left({x}\right)\:{is}\:\boldsymbol{{surjective}}\:,\:{then}\:{find} \\ $$$${the}\:{value}\:{of}\:\boldsymbol{{k}}\:? \\ $$

Question Number 33876    Answers: 0   Comments: 2

how can i write out 6 to thethird power divided by 2 to the fourth power pleasr help me write out this equation

$${how}\:{can}\:{i}\:{write}\:{out}\:\mathrm{6}\:{to}\:{thethird}\:{power}\:{divided}\:{by}\:\mathrm{2}\:{to}\:{the}\:{fourth}\:{power}\:{pleasr}\:{help}\:{me}\:{write}\:{out}\:{this}\:{equation}\: \\ $$

  Pg 1734      Pg 1735      Pg 1736      Pg 1737      Pg 1738      Pg 1739      Pg 1740      Pg 1741      Pg 1742      Pg 1743   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com