Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1736

Question Number 34608    Answers: 0   Comments: 0

Question Number 34607    Answers: 0   Comments: 0

let p∈C[x] degp=n (x_i )_(1≤k≤n) the roots of p(x) a∈C?/p(a)≠0 1) calculate S_1 = Σ_(k=1) ^n (1/(x_k −a)) interms of p,p^′ and a 2)calculste S_2 =Σ_(k=1) ^n (1/((x_k −a)^2 )) interms of p,p^, p^(′′) and a.

$${let}\:{p}\in{C}\left[{x}\right]\:{degp}={n}\:\:\:\left({x}_{{i}} \right)_{\mathrm{1}\leqslant{k}\leqslant{n}} {the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$${a}\in{C}?/{p}\left({a}\right)\neq\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{S}_{\mathrm{1}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{x}_{{k}} −{a}}\:{interms}\:{of}\:{p},{p}^{'} \:{and}\:{a} \\ $$$$\left.\mathrm{2}\right){calculste}\:{S}_{\mathrm{2}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\left({x}_{{k}} −{a}\right)^{\mathrm{2}} }\:\:{interms}\:{of}\:{p},{p}^{,} \\ $$$${p}^{''} \:{and}\:{a}. \\ $$

Question Number 34606    Answers: 0   Comments: 0

let give p(x)=(x+1)^n −(x−1)^n 1) factorize p(x) inside C[x] 2) find the value of Π_(k=1) ^p cotan(((kπ)/(2p+1)))

$${let}\:{give}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{{n}} \:−\left({x}−\mathrm{1}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\prod_{{k}=\mathrm{1}} ^{{p}} \:\:{cotan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right) \\ $$

Question Number 34605    Answers: 0   Comments: 0

decompose inside R(x) thefraction F(x)= ((x^5 +1)/(x^2^ (x−1)^2 )) .

$${decompose}\:{inside}\:{R}\left({x}\right)\:{thefraction} \\ $$$${F}\left({x}\right)=\:\:\frac{{x}^{\mathrm{5}} \:+\mathrm{1}}{{x}^{\mathrm{2}^{} } \left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 34604    Answers: 0   Comments: 0

let p(x)= x^n +x+1 ∈C[x] and z∈C/p(z)=0 prove that ∣z∣<2 .

$${let}\:\:{p}\left({x}\right)=\:{x}^{{n}} \:+{x}+\mathrm{1}\:\in{C}\left[{x}\right]\:{and}\:{z}\in{C}/{p}\left({z}\right)=\mathrm{0} \\ $$$${prove}\:{that}\:\mid{z}\mid<\mathrm{2}\:. \\ $$

Question Number 34603    Answers: 0   Comments: 0

prove that ∀ p∈K[x] p(x) −x divide p(p(x))−x

$${prove}\:{that}\:\forall\:{p}\in{K}\left[{x}\right]\:{p}\left({x}\right)\:−{x}\:{divide}\:{p}\left({p}\left({x}\right)\right)−{x} \\ $$

Question Number 34602    Answers: 0   Comments: 0

simplify Σ_(k=0) ^n ((k/n) −α)^2 C_n ^k x^k (1−x)^(n−k ) α∈C.

$${simplify}\:\sum_{{k}=\mathrm{0}} ^{{n}} \left(\frac{{k}}{{n}}\:−\alpha\right)^{\mathrm{2}} {C}_{{n}} ^{{k}} \:{x}^{{k}} \left(\mathrm{1}−{x}\right)^{{n}−{k}\:} \\ $$$$\alpha\in{C}. \\ $$

Question Number 34596    Answers: 0   Comments: 0

1) prove that Σ_(k=1) ^n H_k =(n+1)H_n −n 2) prove that Σ_(k=1) ^n H_k ^2 =(n+1)H_n ^2 −(3n+1)H_n +2n H_n =Σ_(k=1) ^n (1/k) .

$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{H}_{{k}} =\left({n}+\mathrm{1}\right){H}_{{n}} \:−{n} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{H}_{{k}} ^{\mathrm{2}} \:\:=\left({n}+\mathrm{1}\right){H}_{{n}} ^{\mathrm{2}} \:\:−\left(\mathrm{3}{n}+\mathrm{1}\right){H}_{{n}} \:+\mathrm{2}{n} \\ $$$${H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}}\:. \\ $$

Question Number 34595    Answers: 0   Comments: 0

simplify Σ_(k=1) ^n (((−1)^(k−1) )/k) C_n ^k

$${simplify}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}\:{C}_{{n}} ^{{k}} \\ $$

Question Number 34594    Answers: 0   Comments: 0

prove that Σ_(k=0) ^p (−1)^k C_n ^k =(−1)^p C_(n−1) ^p

$${prove}\:{that}\:\:\sum_{{k}=\mathrm{0}} ^{{p}} \left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:\:=\left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}−\mathrm{1}} ^{{p}} \\ $$

Question Number 34593    Answers: 0   Comments: 0

1) calculate ∫_(−∞) ^(+∞) ((cos(αx^n ))/(x^2 +x +1)) dx with n integr natural 2) find the value of ∫_(−∞) ^∞ ((cos( α x^(2n) ))/(x^2 +x +1))dx 3) calculate ∫_(−∞) ^(+∞) ((cos(π x^3 ))/(x^2 +x +1)) dx

$$\left.\mathrm{1}\right)\:{calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}^{{n}} \right)}{{x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}}\:{dx}\:\:{with}\:{n}\:{integr} \\ $$$${natural} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{\infty} \:\:\:\:\frac{{cos}\left(\:\alpha\:{x}^{\mathrm{2}{n}} \right)}{{x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}}{dx} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left(\pi\:{x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}}\:{dx} \\ $$

Question Number 34587    Answers: 2   Comments: 1

Question Number 34585    Answers: 1   Comments: 1

Question Number 34571    Answers: 0   Comments: 0

A machine with a velocity ratio of 5 requires 150J of work to raise a 500N load through a vertical distance of 200cm,calculate: a)the efficiency b)the M.A of the machine

$${A}\:{machine}\:{with}\:{a}\:{velocity}\:{ratio} \\ $$$${of}\:\mathrm{5}\:{requires}\:\mathrm{150}{J}\:{of}\:{work}\:{to}\:{raise} \\ $$$${a}\:\mathrm{500}{N}\:{load}\:{through}\:{a}\:{vertical} \\ $$$${distance}\:{of}\:\mathrm{200}{cm},{calculate}: \\ $$$$\left.{a}\right){the}\:{efficiency} \\ $$$$\left.{b}\right){the}\:{M}.{A}\:{of}\:{the}\:{machine} \\ $$

Question Number 34567    Answers: 1   Comments: 0

x determinant ((2),())−2x−15=0

$${x}\begin{vmatrix}{\mathrm{2}}\\{}\end{vmatrix}−\mathrm{2}{x}−\mathrm{15}=\mathrm{0} \\ $$

Question Number 34562    Answers: 1   Comments: 1

find the value of ∫_0 ^1 ((arctanx)/((1+x^2 )^2 )) dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctanx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx} \\ $$

Question Number 34561    Answers: 0   Comments: 1

find the value of ∫_0 ^(+∞) ((arctan(x))/((1+x^2 )^2 )) dx

$${find}\:{the}\:{value}\:\:{of}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx} \\ $$

Question Number 34614    Answers: 0   Comments: 1

decompose inside R(x) the fraction F(x)= (1/((x−3)^6 (x+2))) .

$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\:\frac{\mathrm{1}}{\left({x}−\mathrm{3}\right)^{\mathrm{6}} \left({x}+\mathrm{2}\right)}\:. \\ $$

Question Number 34554    Answers: 1   Comments: 3

lim_(x→∞) (((a−1+b^(1/x) )/a))^x = ? (a,b>0)

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{a}−\mathrm{1}+{b}^{\frac{\mathrm{1}}{{x}}} }{{a}}\right)^{{x}} =\:? \\ $$$$\left({a},{b}>\mathrm{0}\right) \\ $$

Question Number 34546    Answers: 0   Comments: 0

∫(dx/(sinx+cosx+tanx+cosecx+secx+cotx))

$$\int\frac{{dx}}{{sinx}+{cosx}+{tanx}+{cosecx}+{secx}+{cotx}} \\ $$

Question Number 34543    Answers: 0   Comments: 2

Question Number 34540    Answers: 0   Comments: 2

a) lim_(x→(π/4)) (((cos x+sin x)^3 −2(√2))/(1−sin 2x)) =? b) lim_(x→0) (sin x)^(1/x) = ?

$$\left.{a}\right)\:\:\:\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)^{\mathrm{3}} −\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}\:=? \\ $$$$\left.{b}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{sin}\:{x}\right)^{\frac{\mathrm{1}}{{x}}} \:=\:? \\ $$

Question Number 34533    Answers: 2   Comments: 5

Solve for x : 5 log_4 x + 48 log_x 4 = (x/8)

$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x}\::\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}\:\mathrm{log}_{\mathrm{4}} \mathrm{x}\:\:\:+\:\:\:\mathrm{48}\:\mathrm{log}_{\mathrm{x}} \mathrm{4}\:\:\:\:=\:\:\:\:\frac{\mathrm{x}}{\mathrm{8}} \\ $$

Question Number 34528    Answers: 1   Comments: 1

Find radius c in terms of radii a and b.

$${Find}\:{radius}\:{c}\:{in}\:{terms}\:{of}\:{radii} \\ $$$${a}\:{and}\:{b}. \\ $$

Question Number 34522    Answers: 0   Comments: 2

lim_(x→0) log _e {((sin (a+(1/x)))/(sin a))}^x , 0<a<(π/2) .

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{log}\:_{{e}} \left\{\frac{\mathrm{sin}\:\left({a}+\frac{\mathrm{1}}{{x}}\right)}{\mathrm{sin}\:{a}}\right\}^{{x}} ,\:\mathrm{0}<{a}<\frac{\pi}{\mathrm{2}}\:. \\ $$

Question Number 34516    Answers: 2   Comments: 1

lim_(x→0) log _(tan^2 x) (tan^2 2x) = ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{log}\:_{\mathrm{tan}\:^{\mathrm{2}} {x}} \left(\mathrm{tan}\:^{\mathrm{2}} \mathrm{2}{x}\right)\:=\:? \\ $$

  Pg 1731      Pg 1732      Pg 1733      Pg 1734      Pg 1735      Pg 1736      Pg 1737      Pg 1738      Pg 1739      Pg 1740   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com