Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1736
Question Number 35018 Answers: 1 Comments: 0
$$\int\int\int\frac{{dxdydz}}{\left({x}+{y}+{z}+\mathrm{1}\right)^{\mathrm{3}} }\:\:\:{bounded}\:{by}\:{the} \\ $$$${coordinate}\:{planes}\:{and}\:{the}\:{plane} \\ $$$${x}+{y}+{z}=\mathrm{1}\:. \\ $$
Question Number 35015 Answers: 2 Comments: 0
$$\int\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 35005 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{remainder}\:\mathrm{when} \\ $$$$\:\:\:\:\mathrm{1}!+\mathrm{2}!+\mathrm{3}!+...+\mathrm{99}!+\mathrm{100}! \\ $$$$\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\:\mathrm{12}. \\ $$
Question Number 35004 Answers: 3 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{41}\:\mathrm{divides}\:\mathrm{2}^{\mathrm{20}} −\mathrm{1} \\ $$
Question Number 34992 Answers: 1 Comments: 1
$$\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{\mathrm{cos}\left({x}\right)}{\mathrm{1}+\mathrm{2sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$
Question Number 34988 Answers: 1 Comments: 1
Question Number 34982 Answers: 2 Comments: 2
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{nx}^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right){x}^{{n}} +\mathrm{1}}{\left({e}^{{x}} −{e}\right)\mathrm{sin}\:\pi{x}}\:=\:? \\ $$
Question Number 34980 Answers: 2 Comments: 0
$${If}\:{cos}\mathrm{45}°\:=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:.\:{Find}\:{cos}\mathrm{45}.\mathrm{1}° \\ $$
Question Number 34956 Answers: 3 Comments: 2
Question Number 34954 Answers: 1 Comments: 1
Question Number 34952 Answers: 0 Comments: 2
Question Number 34951 Answers: 1 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{e}×{a}}{{n}}\right)^{{n}} \:=\:?\: \\ $$$${Here}\:{a}\epsilon\:\mathbb{R}^{+} \\ $$
Question Number 34930 Answers: 1 Comments: 3
$${A}\:{committee}\:{of}\:\mathrm{4}\:{is}\:{to}\:{be}\:{formed} \\ $$$${from}\:\mathrm{4}\:{principals} \\ $$$${and}\:\mathrm{5}\:{students}.{In}\:{how}\:{many}\:{ways} \\ $$$${can}\:{this}\:{be}\:{done}\:{if}\:{a}\:{particular} \\ $$$${student}\:{and}\:{a}\:{principal}\:{must}\:{be} \\ $$$${in}\:{the}\:{committee}. \\ $$$$ \\ $$
Question Number 34921 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left\{\:\frac{{x}}{{x}+\frac{\left({x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }{{x}+\:\frac{\left({x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }{{x}+\frac{\left({x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }{.........\:{infinity}\:}}}}\right\} \\ $$
Question Number 34913 Answers: 0 Comments: 6
$${let}\:{f}\left({x}\right)=\:\frac{\mathrm{3}}{\mathrm{2}+{cosx}}\:\:{developp}\:{f}\:{ar}\:{fourier}\:{serie}. \\ $$
Question Number 34912 Answers: 1 Comments: 0
$${let}\:{f}\left({x},{y},{z}\right)\:=\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\alpha} \:\:\:\:\:{with}\:\alpha\in{R} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\Delta{f} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\alpha\:{in}\:{order}\:{to}\:{have}\:\Delta{f}=\mathrm{0} \\ $$
Question Number 34911 Answers: 1 Comments: 1
$${find}\:\:\:\int_{\mathrm{2}} ^{\mathrm{3}} \:\:\:\:\frac{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:{dx} \\ $$
Question Number 34910 Answers: 0 Comments: 1
$${find}\:{J}_{{n},{p}} \:=\int_{\mathrm{0}} ^{\infty} \:\:{x}^{{n}} \:\:{e}^{−\frac{{x}^{\mathrm{2}} }{{p}}} \:\:{dx}\:\:{with}\:{p}>\mathrm{0}\:{and}\:{n}\:{integr} \\ $$
Question Number 35037 Answers: 0 Comments: 0
$${prove}\:{that}\:\forall\:{n}\in{N} \\ $$$$\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:\left(−\mathrm{1}\right)^{{k}} \left(\:{C}_{\mathrm{2}{n}} ^{{k}} \right)^{\mathrm{2}} \:=\left(−\mathrm{1}\right)^{{n}} \:{C}_{\mathrm{2}{n}} ^{{n}} \:\:. \\ $$
Question Number 35036 Answers: 1 Comments: 0
$${cslculate}\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{2}} \left({n}+\mathrm{1}−{k}\right) \\ $$
Question Number 35035 Answers: 1 Comments: 0
$${calculate}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{k}}{\left({k}+\mathrm{1}\right)!} \\ $$
Question Number 35032 Answers: 0 Comments: 0
Question Number 34892 Answers: 0 Comments: 0
Question Number 34891 Answers: 1 Comments: 0
Question Number 34888 Answers: 1 Comments: 1
Question Number 34901 Answers: 0 Comments: 3
$$\int_{−\pi/\mathrm{2}} ^{+\pi/\mathrm{2}} \sqrt{\mathrm{cos}^{\mathrm{2}{n}−\mathrm{1}} {x}−\mathrm{cos}^{\mathrm{2}{n}+\mathrm{1}} {x}}{dx} \\ $$$$=\left[−\frac{\mathrm{2cos}^{\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}}} {x}}{\mathrm{2}{n}+\mathrm{1}}\right]_{−\pi/\mathrm{2}} ^{+\pi/\mathrm{2}} =\mathrm{0}? \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mistake}\:\mathrm{in}\:\mathrm{above}? \\ $$$$\int_{−\pi/\mathrm{2}} ^{+\pi/\mathrm{2}} \sqrt{\mathrm{cos}^{\mathrm{2}{n}−\mathrm{1}} {x}−\mathrm{cos}^{\mathrm{2}{n}+\mathrm{1}} {x}}{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \sqrt{\mathrm{cos}^{\mathrm{2}{n}−\mathrm{1}} {x}−\mathrm{cos}^{\mathrm{2}{n}+\mathrm{1}} {x}}{dx} \\ $$$$=\frac{\mathrm{4}}{\mathrm{2}{n}+\mathrm{1}}\:\left(\mathrm{this}\:\mathrm{is}\:\mathrm{correct}\:\mathrm{answer}\right) \\ $$
Pg 1731 Pg 1732 Pg 1733 Pg 1734 Pg 1735 Pg 1736 Pg 1737 Pg 1738 Pg 1739 Pg 1740
Terms of Service
Privacy Policy
Contact: info@tinkutara.com