Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1732
Question Number 34866 Answers: 0 Comments: 0
$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}\left({t}\:+\frac{\mathrm{1}}{{t}}\right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\: \\ $$
Question Number 34865 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:{e}^{−\sqrt{\mathrm{1}+\mathrm{2}{x}}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 34864 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)={x}\:{arctan}\left(\mathrm{1}+{e}^{−{x}} \right) \\ $$$${developp}\:{f}\:{at}\:{intrgr}\:{serie}\:. \\ $$
Question Number 34863 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\:\frac{{artan}\left({x}+\mathrm{1}\right)}{\mathrm{1}+\mathrm{2}{x}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 34862 Answers: 2 Comments: 8
$${find}\:{the}\:{value}\:{of} \\ $$$${f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{cosx}}{\mathrm{1}+\mathrm{2}{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$
Question Number 34850 Answers: 2 Comments: 0
Question Number 34849 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)\:=\:\:\:\:\frac{{e}^{−{x}} }{\mathrm{2}+{x}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 34843 Answers: 0 Comments: 1
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}_{} }\:\frac{\mathrm{ln}\:{x}}{{x}}\:=\:? \\ $$$${You}\:{can}\:\:{only}\:{use} \\ $$$${series}\:{expansion}\:/\:{sandwich}\:{theorem}! \\ $$
Question Number 34827 Answers: 1 Comments: 5
$$\boldsymbol{{Find}}\:\int\:\boldsymbol{{Sin}}^{\mathrm{6}} \boldsymbol{{x}}\:\boldsymbol{{dx}} \\ $$$$ \\ $$
Question Number 34821 Answers: 2 Comments: 1
$${Find}\:{range}\:{of} \\ $$$$\:\:\:{y}=\frac{{x}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)}\:. \\ $$
Question Number 34792 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{{x}} \\ $$$$\mathrm{4}\boldsymbol{{x}}=\mathrm{2}^{\boldsymbol{{x}}} \\ $$
Question Number 34845 Answers: 0 Comments: 0
$${f}\left({x}\right)=\mathrm{cos}\left({x}\right) \\ $$$${g}\left({x}\right)=\mathrm{2}^{{x}} \\ $$$${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${g}:\mathbb{R}\rightarrow\mathbb{R}^{+} \\ $$$$\left[{f}\left({x}\right)\right]^{\mathrm{2}} +\left[{f}\left(\pi/\mathrm{2}−{x}\right)\right]^{\mathrm{2}} =\frac{\mathrm{log}_{\mathrm{2}} {g}\left({x}\right)}{{x}};{x}\neq\mathrm{0} \\ $$$${f}\left({g}\left({x}\right){x}\right)=\left[{f}\left({g}\left({x}−\mathrm{1}\right){x}\right)\right]^{\mathrm{2}} +\left[{f}\left(\pi/\mathrm{2}−{g}\left({x}−\mathrm{1}\right){x}\right)\right]^{\mathrm{2}} \\ $$$$\mathrm{find}\:{f}\:\mathrm{and}\:{g} \\ $$
Question Number 34803 Answers: 1 Comments: 2
Question Number 34781 Answers: 1 Comments: 0
Question Number 34774 Answers: 1 Comments: 1
$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{{n}^{{p}} \:{sin}^{\mathrm{2}} \left({n}!\right)}{{n}^{{p}+\mathrm{1}} }\:\:{with}\mathrm{0}<{p}<\mathrm{1}\:. \\ $$
Question Number 34771 Answers: 0 Comments: 1
$${let}\:{A}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right){dx} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right)\:\:\:\:\left({x}\in{R}\right) \\ $$
Question Number 34770 Answers: 1 Comments: 2
$${let}\:{f}\left({x}\right)=\:{ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{extrsct}\:{Re}\left({f}\left({x}\right)\right)\:{and}\:{Im}\left({f}\left({x}\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{by}\:{two}\:{methods} \\ $$
Question Number 34765 Answers: 1 Comments: 0
Question Number 34762 Answers: 1 Comments: 0
Question Number 34760 Answers: 2 Comments: 0
Question Number 34759 Answers: 1 Comments: 0
Question Number 34755 Answers: 1 Comments: 5
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{x}}\:−\:\frac{\mathrm{ln}^{\mathrm{1000}} \:\left(\mathrm{1}\:+\:{x}\right)}{{x}^{\mathrm{1001}} }\right) \\ $$
Question Number 34746 Answers: 0 Comments: 0
$${y}+\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\mathrm{1}}{{x}}\left({x}\mathrm{ln}\:{x}−\frac{{dy}}{{dx}}+\mathrm{cos}\:{x}\right) \\ $$$${y}=? \\ $$
Question Number 34733 Answers: 0 Comments: 0
$${Someone}\:{plz}\:{solve}\: \\ $$$${Q}\:\mathrm{34652}\: \\ $$
Question Number 34724 Answers: 1 Comments: 1
$$\boldsymbol{\mathrm{use}}\:\boldsymbol{\mathrm{bernoulli}}\:\boldsymbol{\mathrm{methods}} \\ $$$$\boldsymbol{\mathrm{sec}}^{\mathrm{2}} \boldsymbol{{y}}\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}+\boldsymbol{{x}\mathrm{tan}{y}}=\boldsymbol{{x}}^{\mathrm{3}} \\ $$
Question Number 34739 Answers: 3 Comments: 3
Pg 1727 Pg 1728 Pg 1729 Pg 1730 Pg 1731 Pg 1732 Pg 1733 Pg 1734 Pg 1735 Pg 1736
Terms of Service
Privacy Policy
Contact: info@tinkutara.com