please is there any general way for
calculating the error or uncertainty
in g when
m=((4π^2 )/g) where m=slope and
g=acceleration due to gravity
please help
let consider the serie Σ_(n≥1) sin((1/(√n)))x^n
1) find the radius of convergence
2)study the convergence at −R and R
3) let S(x)its sum study the continuity
of S
4) prove that (1−x)_(x→1^− ) S(x)→0
let give S(x)=Σ_(n≥0) (((−1)^n )/(√(x+n))) ,x>0
1)study the contnuity ,derivsbility,limits
at 0^+ and +∞
2) we give ∫_0 ^∞ e^(−t^2 ) dt =((√π)/2) .prove that
∀ x>0 S(x)=(1/(√π)) ∫_0 ^∞ (e^(−tx) /((√t)(1+e^(−t) )))dt .
let S_n = Σ_(k=1) ^∞ (((−1)^(k−1) )/k) and
T_n = Σ_(k=1) ^∞ (((−1)^(k−1) )/(2k−1))
1) calculate lim S_n and lim T_n (n→∞)
2)prove that Σ(S_n −ln2) and
Σ(T_n −(π/4))converges and find its sum