Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1726

Question Number 36422    Answers: 0   Comments: 1

find f(x)= ∫_0 ^x (t^2 +1)arctan(t)dt .

$${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \left({t}^{\mathrm{2}} +\mathrm{1}\right){arctan}\left({t}\right){dt}\:. \\ $$

Question Number 36421    Answers: 0   Comments: 1

find ∫ (dx/(1+2(√(1−x))))

$${find}\:\int\:\:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}−{x}}} \\ $$

Question Number 36420    Answers: 0   Comments: 0

let f(x)=∫_0 ^∞ (( arctan(xt^2 ))/(1+t^4 ))dt 1) calculate f^′ (x) 2) find a simple form of f(x).

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\:{arctan}\left({xt}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right). \\ $$

Question Number 36419    Answers: 0   Comments: 3

calculate ∫_0 ^∞ ((x^2 −1)/((2x^2 +3)^3 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left(\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{3}} }{dx} \\ $$

Question Number 36418    Answers: 1   Comments: 0

calculate ∫_(−3) ^4 ∣x^2 −2x−3∣dx

$${calculate}\:\:\int_{−\mathrm{3}} ^{\mathrm{4}} \mid{x}^{\mathrm{2}} \:−\mathrm{2}{x}−\mathrm{3}\mid{dx} \\ $$

Question Number 36417    Answers: 1   Comments: 1

calculate ∫_2 ^6 (dx/((√(x+1)) +(√(x−1))))

$${calculate}\:\int_{\mathrm{2}} ^{\mathrm{6}} \:\:\:\frac{{dx}}{\sqrt{{x}+\mathrm{1}}\:+\sqrt{{x}−\mathrm{1}}} \\ $$

Question Number 36416    Answers: 0   Comments: 0

calculate I = ∫_1 ^2 ((2x^3 +5x^2 −4x−7)/((x+2)^2 ))dx

$${calculate}\:{I}\:=\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{\mathrm{2}{x}^{\mathrm{3}} \:+\mathrm{5}{x}^{\mathrm{2}} \:−\mathrm{4}{x}−\mathrm{7}}{\left({x}+\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 36415    Answers: 0   Comments: 1

calculate I = ∫_0 ^(π/2) (x^3 +x)cos^2 xdx and J = ∫_0 ^(π/2) (x^3 +x)sin^2 xdx cslculate I and J .

$${calculate}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({x}^{\mathrm{3}} \:+{x}\right){cos}^{\mathrm{2}} {xdx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\left({x}^{\mathrm{3}} \:+{x}\right){sin}^{\mathrm{2}} {xdx} \\ $$$${cslculate}\:{I}\:{and}\:{J}\:. \\ $$

Question Number 36413    Answers: 0   Comments: 1

let I_n = ∫_0 ^1 x^n (√(3+x))dx 1)calculate lim_(n→+∞) I_n 2) calculate lim_(n→+∞) n I_n

$${let}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{3}+{x}}{dx} \\ $$$$\left.\mathrm{1}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} {I}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:{n}\:{I}_{{n}} \\ $$

Question Number 36412    Answers: 1   Comments: 1

calculate I_λ =∫_0 ^λ e^(−x) ln(1+e^x )dx

$${calculate}\:{I}_{\lambda} \:=\int_{\mathrm{0}} ^{\lambda} \:{e}^{−{x}} {ln}\left(\mathrm{1}+{e}^{{x}} \right){dx} \\ $$

Question Number 36411    Answers: 0   Comments: 0

calculate ∫_1 ^3 ((x−1)/(∣x^2 −2x∣ +1))dx

$${calculate}\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\:\frac{{x}−\mathrm{1}}{\mid{x}^{\mathrm{2}} −\mathrm{2}{x}\mid\:+\mathrm{1}}{dx} \\ $$

Question Number 36410    Answers: 0   Comments: 1

find the value of I_n = ∫_0 ^1 x^n (√(1−x))dx

$${find}\:{the}\:{value}\:{of}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}−{x}}{dx} \\ $$

Question Number 36406    Answers: 2   Comments: 1

find the values of I = ∫_0 ^π cos^4 dx and J = ∫_0 ^π sin^4 dx .

$${find}\:{the}\:{values}\:{of}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\pi} {cos}^{\mathrm{4}} {dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\pi} \:{sin}^{\mathrm{4}} {dx}\:. \\ $$

Question Number 36398    Answers: 1   Comments: 1

Consider triangle ABC.If 206 lines are drawn from A to BC how many triangles are formed?

$${Consider}\:{triangle}\:{ABC}.{If}\:\mathrm{206} \\ $$$${lines}\:{are}\:{drawn}\:{from}\:{A}\:{to}\:{BC}\:{how} \\ $$$${many}\:{triangles}\:{are}\:{formed}? \\ $$

Question Number 36397    Answers: 2   Comments: 0

find I = ∫_1 ^2 (dx/(x(√(x+1)) +(x+1)(√x)))

$${find}\:{I}\:\:=\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\:\:\frac{{dx}}{{x}\sqrt{{x}+\mathrm{1}}\:\:+\left({x}+\mathrm{1}\right)\sqrt{{x}}} \\ $$$$ \\ $$

Question Number 36394    Answers: 0   Comments: 0

let f(x)=artanx find L(f(x)) L mean laplace trsnsform.

$${let}\:{f}\left({x}\right)={artanx}\:{find}\:\:{L}\left({f}\left({x}\right)\right) \\ $$$${L}\:{mean}\:{laplace}\:{trsnsform}. \\ $$

Question Number 36393    Answers: 0   Comments: 0

let f(x) = (2/(sinx)) ,2π periodic odd developp f at fourier serie .

$${let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{2}}{{sinx}}\:\:\:,\mathrm{2}\pi\:{periodic}\:{odd} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$

Question Number 36389    Answers: 0   Comments: 0

If μ is a universal set and A,B,C are 3 sets . Given that n(μ)= 52 , n(A∩B) = 26 and n(A ∪ C) = 32 find n(A),n(B) and n(C)

$$\:\mathrm{If}\:\mu\:\mathrm{is}\:\mathrm{a}\:\mathrm{universal}\:\mathrm{set}\:\mathrm{and}\:\mathrm{A},\mathrm{B},\mathrm{C}\:\mathrm{are} \\ $$$$\mathrm{3}\:\mathrm{sets}\:.\:\:\:\mathrm{Given}\:\mathrm{that}\: \\ $$$$\mathrm{n}\left(\mu\right)=\:\mathrm{52}\:\:,\:\mathrm{n}\left(\mathrm{A}\cap\mathrm{B}\right)\:=\:\mathrm{26}\:\mathrm{and}\: \\ $$$$\mathrm{n}\left(\mathrm{A}\:\cup\:\mathrm{C}\right)\:=\:\mathrm{32}\:\mathrm{find}\:\mathrm{n}\left(\mathrm{A}\right),\mathrm{n}\left(\mathrm{B}\right)\:\mathrm{and} \\ $$$$\mathrm{n}\left(\mathrm{C}\right) \\ $$

Question Number 36385    Answers: 1   Comments: 1

Question Number 36387    Answers: 0   Comments: 0

DANILA

$$\mathbb{DANILA} \\ $$

Question Number 36369    Answers: 0   Comments: 0

Question Number 36368    Answers: 0   Comments: 0

In an organic Compound Carbon = 85.7% Hydrogen = 14.3% and RMM= 56 find the molecular formular.

$$\mathrm{In}\:\mathrm{an}\:\mathrm{organic}\:\mathrm{Compound}\:\mathrm{Carbon} \\ $$$$=\:\mathrm{85}.\mathrm{7\%}\:\:\mathrm{Hydrogen}\:=\:\mathrm{14}.\mathrm{3\%}\:\mathrm{and} \\ $$$$\mathrm{RMM}=\:\mathrm{56}\:\mathrm{find}\:\mathrm{the}\:\mathrm{molecular}\: \\ $$$$\mathrm{formular}. \\ $$

Question Number 36367    Answers: 1   Comments: 0

$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 36359    Answers: 0   Comments: 0

decompose inside C(x) the fraction F(x)= (1/((x^2 +1)^n )) with n integr nstural.

$${decompose}\:{inside}\:{C}\left({x}\right)\:{the}\:{fraction}\: \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{{n}} }\:\:{with}\:{n}\:{integr}\:{nstural}. \\ $$

Question Number 36352    Answers: 0   Comments: 1

let p(x) =x^n −e^(inα) with n integr and α fromR 1) find the roots of p(x) 2) factorize p(x) inside C[x] .

$${let}\:{p}\left({x}\right)\:={x}^{{n}} \:−{e}^{{in}\alpha} \:\:\:\:{with}\:{n}\:{integr}\:{and}\:\alpha\:{fromR} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right]\:. \\ $$

Question Number 36346    Answers: 0   Comments: 6

  Pg 1721      Pg 1722      Pg 1723      Pg 1724      Pg 1725      Pg 1726      Pg 1727      Pg 1728      Pg 1729      Pg 1730   

Terms of Service

Privacy Policy

Contact: [email protected]