Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1724

Question Number 36389    Answers: 0   Comments: 0

If μ is a universal set and A,B,C are 3 sets . Given that n(μ)= 52 , n(A∩B) = 26 and n(A ∪ C) = 32 find n(A),n(B) and n(C)

$$\:\mathrm{If}\:\mu\:\mathrm{is}\:\mathrm{a}\:\mathrm{universal}\:\mathrm{set}\:\mathrm{and}\:\mathrm{A},\mathrm{B},\mathrm{C}\:\mathrm{are} \\ $$$$\mathrm{3}\:\mathrm{sets}\:.\:\:\:\mathrm{Given}\:\mathrm{that}\: \\ $$$$\mathrm{n}\left(\mu\right)=\:\mathrm{52}\:\:,\:\mathrm{n}\left(\mathrm{A}\cap\mathrm{B}\right)\:=\:\mathrm{26}\:\mathrm{and}\: \\ $$$$\mathrm{n}\left(\mathrm{A}\:\cup\:\mathrm{C}\right)\:=\:\mathrm{32}\:\mathrm{find}\:\mathrm{n}\left(\mathrm{A}\right),\mathrm{n}\left(\mathrm{B}\right)\:\mathrm{and} \\ $$$$\mathrm{n}\left(\mathrm{C}\right) \\ $$

Question Number 36385    Answers: 1   Comments: 1

Question Number 36387    Answers: 0   Comments: 0

DANILA

$$\mathbb{DANILA} \\ $$

Question Number 36369    Answers: 0   Comments: 0

Question Number 36368    Answers: 0   Comments: 0

In an organic Compound Carbon = 85.7% Hydrogen = 14.3% and RMM= 56 find the molecular formular.

$$\mathrm{In}\:\mathrm{an}\:\mathrm{organic}\:\mathrm{Compound}\:\mathrm{Carbon} \\ $$$$=\:\mathrm{85}.\mathrm{7\%}\:\:\mathrm{Hydrogen}\:=\:\mathrm{14}.\mathrm{3\%}\:\mathrm{and} \\ $$$$\mathrm{RMM}=\:\mathrm{56}\:\mathrm{find}\:\mathrm{the}\:\mathrm{molecular}\: \\ $$$$\mathrm{formular}. \\ $$

Question Number 36367    Answers: 1   Comments: 0

$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 36359    Answers: 0   Comments: 0

decompose inside C(x) the fraction F(x)= (1/((x^2 +1)^n )) with n integr nstural.

$${decompose}\:{inside}\:{C}\left({x}\right)\:{the}\:{fraction}\: \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{{n}} }\:\:{with}\:{n}\:{integr}\:{nstural}. \\ $$

Question Number 36352    Answers: 0   Comments: 1

let p(x) =x^n −e^(inα) with n integr and α fromR 1) find the roots of p(x) 2) factorize p(x) inside C[x] .

$${let}\:{p}\left({x}\right)\:={x}^{{n}} \:−{e}^{{in}\alpha} \:\:\:\:{with}\:{n}\:{integr}\:{and}\:\alpha\:{fromR} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right]\:. \\ $$

Question Number 36346    Answers: 0   Comments: 6

Question Number 36344    Answers: 0   Comments: 3

Question Number 36341    Answers: 1   Comments: 0

y=(((x−3)(x+5)^2 )/(x^2 (x+2))) Find local maxima and minima; hence draw the graph.Also find radius of circle touching all three sections of the curve that results.

$${y}=\frac{\left({x}−\mathrm{3}\right)\left({x}+\mathrm{5}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} \left({x}+\mathrm{2}\right)} \\ $$$${Find}\:{local}\:{maxima}\:{and}\:{minima}; \\ $$$${hence}\:{draw}\:{the}\:{graph}.{Also}\:{find} \\ $$$${radius}\:{of}\:{circle}\:{touching}\:{all}\:{three} \\ $$$${sections}\:{of}\:{the}\:{curve}\:{that}\:{results}. \\ $$$$ \\ $$

Question Number 36338    Answers: 0   Comments: 0

prove (1+(1/1^2 ))(1+(1/2^2 ))(1+(1/3^2 ))...upto infinity =(1/Π)sinhΠ

$${prove}\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\right)...{upto}\:{infinity} \\ $$$$=\frac{\mathrm{1}}{\Pi}{sinh}\Pi \\ $$

Question Number 36336    Answers: 0   Comments: 4

find f(x)= ∫_0 ^∞ arctan(xt^2 )dt with x>0

$${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:{with}\:{x}>\mathrm{0} \\ $$

Question Number 36335    Answers: 0   Comments: 1

find f(t) = ∫_0 ^1 arctan(tx^2 )dx with t≥0 developp f at integr serie

$${find}\:\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\left({tx}^{\mathrm{2}} \right){dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${developp}\:\:{f}\:{at}\:{integr}\:{serie} \\ $$

Question Number 36328    Answers: 0   Comments: 1

find the perimeter of a right angle triangle 4xcm high and 5xcm base

$$\mathrm{find}\:\mathrm{the}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angle}\: \\ $$$$\mathrm{triangle}\:\mathrm{4}{xcm}\:{high}\:{and}\:\mathrm{5}{xcm}\:{base} \\ $$

Question Number 36316    Answers: 3   Comments: 0

Find domain and range of the function f(x)=((x^2 −6x+8)/(x−5)) . Also draw the graph.

$${Find}\:{domain}\:{and}\:{range}\:{of}\:{the} \\ $$$${function}\:\:{f}\left({x}\right)=\frac{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{8}}{{x}−\mathrm{5}}\:\:. \\ $$$${Also}\:{draw}\:{the}\:{graph}. \\ $$

Question Number 36314    Answers: 1   Comments: 1

Question Number 36291    Answers: 1   Comments: 0

find the image of (−2,3) after the reflection on the a) x−axis b) y−axis

$$\mathrm{find}\:\mathrm{the}\:\mathrm{image}\:\mathrm{of}\:\:\left(−\mathrm{2},\mathrm{3}\right)\:\mathrm{after}\:\mathrm{the} \\ $$$$\mathrm{reflection}\:\mathrm{on}\:\mathrm{the} \\ $$$$\left.\mathrm{a}\left.\right)\:\mathrm{x}−\mathrm{axis}\:\:\:\:\:\mathrm{b}\right)\:\mathrm{y}−\mathrm{axis} \\ $$

Question Number 36290    Answers: 2   Comments: 1

Find the angle between the lines l_1 :y − x −4 = 0 and l_2 :2x − y = 7 and hence the perpendicular distance from one point on l_1 to l_2 .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{the}\:\mathrm{lines} \\ $$$$\:\:\:{l}_{\mathrm{1}} :\mathrm{y}\:−\:\mathrm{x}\:−\mathrm{4}\:=\:\mathrm{0}\:\mathrm{and}\:{l}_{\mathrm{2}} :\mathrm{2}{x}\:−\:{y}\:=\:\mathrm{7}\: \\ $$$$\mathrm{and}\:\mathrm{hence}\:\mathrm{the}\:\mathrm{perpendicular}\: \\ $$$$\mathrm{distance}\:\mathrm{from}\:\mathrm{one}\:\mathrm{point}\:\mathrm{on}\:{l}_{\mathrm{1}} \\ $$$$\mathrm{to}\:{l}_{\mathrm{2}} . \\ $$$$ \\ $$

Question Number 36279    Answers: 1   Comments: 0

Consider a particle in a uniformly charge electric field, if the particle has a charge of 2C and is place 3m away from the charge plate. calculate the work needed to move the 2C particle to a distance of 1m from the plate.

$${Consider}\:{a}\:{particle}\:{in}\:{a}\: \\ $$$${uniformly}\:{charge}\:{electric}\:{field}, \\ $$$${if}\:{the}\:{particle}\:{has}\:{a}\:{charge}\:{of}\:\mathrm{2}{C} \\ $$$${and}\:{is}\:{place}\:\mathrm{3}{m}\:{away}\:{from}\:{the} \\ $$$${charge}\:{plate}. \\ $$$$\boldsymbol{{calculate}}\:\boldsymbol{{the}}\:\boldsymbol{{work}}\:\boldsymbol{{needed}}\:\boldsymbol{{to}} \\ $$$$\boldsymbol{{move}}\:\boldsymbol{{the}}\:\mathrm{2}\boldsymbol{{C}}\:\boldsymbol{{particle}}\:\boldsymbol{{to}}\:\boldsymbol{{a}} \\ $$$$\boldsymbol{{distance}}\:\boldsymbol{{of}}\:\mathrm{1}\boldsymbol{{m}}\:\boldsymbol{{from}}\:\boldsymbol{{the}}\: \\ $$$$\boldsymbol{{plate}}. \\ $$

Question Number 36270    Answers: 1   Comments: 8

Question Number 36259    Answers: 4   Comments: 0

Question Number 36246    Answers: 1   Comments: 0

What is the absolute value of ( −10)?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{absolute}\:\mathrm{value}\:\mathrm{of}\:\left(\:−\mathrm{10}\right)? \\ $$

Question Number 36239    Answers: 0   Comments: 1

the opposite side of a triangle is x + y,and the hypotenuse is 3x+y Given that that A is an acute angle find the value of Cos A

$$\mathrm{the}\:\mathrm{opposite}\:\mathrm{side}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{is}\: \\ $$$$\:{x}\:+\:{y},\mathrm{and}\:\mathrm{the}\:\mathrm{hypotenuse}\:\mathrm{is}\:\mathrm{3}{x}+{y} \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{that}\:\mathrm{A}\:\mathrm{is}\:\mathrm{an}\:\mathrm{acute}\:\mathrm{angle} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{Cos}\:\mathrm{A} \\ $$

Question Number 36237    Answers: 2   Comments: 0

Question Number 36227    Answers: 1   Comments: 0

1×10^(7 ) electrons pass through a conductor in 1.0μs.Find the current in Amperes flowing through the conductor. electronic charge=1.6×10^(−19) C

$$\mathrm{1}×\mathrm{10}^{\mathrm{7}\:} {electrons}\:{pass}\:{through}\:{a}\: \\ $$$${conductor}\:{in}\:\mathrm{1}.\mathrm{0}\mu{s}.{Find}\:{the}\: \\ $$$${current}\:{in}\:{Amperes}\:{flowing} \\ $$$${through}\:{the}\:{conductor}. \\ $$$${electronic}\:{charge}=\mathrm{1}.\mathrm{6}×\mathrm{10}^{−\mathrm{19}} {C} \\ $$

  Pg 1719      Pg 1720      Pg 1721      Pg 1722      Pg 1723      Pg 1724      Pg 1725      Pg 1726      Pg 1727      Pg 1728   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com