Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1724
Question Number 36104 Answers: 0 Comments: 1
$$\mathrm{If}\:\boldsymbol{\mathrm{f}}:\boldsymbol{\mathrm{R}}\rightarrow\boldsymbol{\mathrm{R}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mid\:\mathrm{f}\left({x}\right)\:−\:\mathrm{f}\left(\mathrm{y}\right)\mid\:\leqslant\:\mid\:\mathrm{sin}\:{x}\:−\:\mathrm{sin}\:\mathrm{y}\:\mid\forall{x},\mathrm{y}\in\mathbb{R}, \\ $$$$\mathrm{Then}\:\mathrm{f}\left({x}\right)\:\mathrm{is}\: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Bijective} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{many}−\mathrm{one} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{periodic} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{non}−\mathrm{periodic} \\ $$
Question Number 36103 Answers: 3 Comments: 0
$$\boldsymbol{\mathrm{convert}}\:\mathrm{0}.\mathrm{26999999}...\boldsymbol{\mathrm{into}}\:\boldsymbol{\mathrm{fraction}}\: \\ $$$$\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{b}}}\:\boldsymbol{\mathrm{where}}\:\boldsymbol{\mathrm{a}}\neq\mathrm{0} \\ $$
Question Number 36101 Answers: 2 Comments: 2
Question Number 36099 Answers: 0 Comments: 4
Question Number 36096 Answers: 1 Comments: 4
Question Number 36092 Answers: 1 Comments: 1
$$\:\mathrm{solve}\:\mathrm{for}\:\mathrm{0}°\leqslant\:\theta\:\leqslant\:\mathrm{360}°\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\mathrm{cos}\left(\theta\:+\:\frac{\pi}{\mathrm{3}}\right)=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 36091 Answers: 0 Comments: 1
$$\mathrm{Given}\:\mathrm{the}\:\mathrm{position}\:\mathrm{vectors} \\ $$$${v}_{\mathrm{1}} =\:\mathrm{2}{i}\:−\:\mathrm{2}{j}\:{and}\:{v}_{\mathrm{2}} =\:\mathrm{2}{j}, \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{unit}\:\mathrm{vector}\:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vector}\: \\ $$$${v}_{\mathrm{1}} −\:{v}_{\mathrm{2}\:\:\:} \mathrm{is}\:\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\left(\mathrm{i}−\mathrm{2j}\right) \\ $$
Question Number 36080 Answers: 2 Comments: 1
$$\:\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{how}\: \\ $$$$\alpha^{\mathrm{2}} +\:\beta^{\mathrm{2}} =\:\left(\alpha+\beta\right)^{\mathrm{2}} −\:\mathrm{2}\alpha\beta\:\mathrm{why}\:\mathrm{not}\: \\ $$$$\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\:\left(\alpha+\beta\right)^{\mathrm{2}} +\:\mathrm{2}\alpha\beta? \\ $$
Question Number 36068 Answers: 0 Comments: 1
$${Why}\:{is}\:{it}\:{not}\:{advisable}\:{to}\:{use} \\ $$$${small}\:{incident}\:{angle}\:{when}\:{performing} \\ $$$${experiment}\:{on}\:{refraction}\:{using}\:{a} \\ $$$${triangular}\:{prism}? \\ $$
Question Number 36061 Answers: 1 Comments: 2
Question Number 36059 Answers: 1 Comments: 0
Question Number 36057 Answers: 2 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{cosx}}{{sinx}\:+{tanx}}{dx}\: \\ $$
Question Number 36056 Answers: 1 Comments: 2
$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{2}{x}}{\left({x}^{\mathrm{2}} \:+{mx}\:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:{with}\:\mid{m}\mid<\mathrm{2} \\ $$
Question Number 36049 Answers: 0 Comments: 0
$$\mathrm{A}\:\mathrm{triangle}\:\bigtriangleup\mathrm{ABC}\:\mathrm{is}\:\mathrm{constructed}\: \\ $$$$\mathrm{such}\:\mathrm{that}\:\angle\mathrm{B}=\:\mathrm{90}°\:\:\mathrm{and}\:\mathrm{AB}=\:\mathrm{5cm} \\ $$$$\mathrm{Given}\:\mathrm{that}\:\angle\mathrm{C}=\:\mathrm{45}°\:.\:\mathrm{show}\:\mathrm{that} \\ $$$$\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{2},\mathrm{0}\right)\:\mathrm{lie}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line}\: \\ $$$$\mathrm{BC}\:\mathrm{and}\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{AB}\:\mathrm{but} \\ $$$$\mathrm{meet}\:\mathrm{at}\:\mathrm{45}^{} °\:\mathrm{with}\:\mathrm{the}\:\mathrm{line}\:\mathrm{AC}. \\ $$$$ \\ $$
Question Number 36034 Answers: 1 Comments: 1
Question Number 36031 Answers: 0 Comments: 0
$$\mathrm{Q}.\:\mathrm{Evaluate}:\:\:\:\int_{\int\mathrm{xyzdxdydz}} ^{\int\mathrm{zyxdzdydx}} \int_{\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{sin}\:\mathrm{x}} \right)} ^{\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{cos}\:\mathrm{x}} \right)} \int_{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{x}}} ^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{x}}} \int_{\mathrm{0}} ^{\infty} \mathrm{w}^{\mathrm{1}−\mathrm{x}} \mathrm{x}^{\mathrm{1}−\mathrm{y}} \mathrm{y}^{\mathrm{1}−\mathrm{z}} \mathrm{z}^{\mathrm{1}−\mathrm{w}} \mathrm{dwdxdydz} \\ $$
Question Number 36030 Answers: 1 Comments: 1
$$\mathrm{Q}.\:\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{for}\:\mathrm{area}\:\mathrm{of}\:\mathrm{sphere}?\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{If}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{cube}\:\mathrm{is}\:\mathrm{4}\pi\mathrm{r}^{\mathrm{2}} .\:\mathrm{And}\:\mathrm{all}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{cube}\:\mathrm{touches}\:\mathrm{the}\:\mathrm{sphere}. \\ $$
Question Number 36024 Answers: 1 Comments: 2
Question Number 36021 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{hypotenuse}\:\mathrm{never}\:\mathrm{be} \\ $$$$\mathrm{even}\:\mathrm{of}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angled}\:\mathrm{triangle}\:\mathrm{whose} \\ $$$$\mathrm{positive}\:\mathrm{integer}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{relatively}\:\mathrm{prime}. \\ $$
Question Number 36019 Answers: 3 Comments: 0
$${If}\:{a}+{b}+{c}=\mathrm{0}\:{show}\:{that} \\ $$$$\left(\frac{{a}}{{b}−{c}}+\frac{{b}}{{c}−{a}}+\frac{{c}}{{a}−{b}}\right)\left(\frac{{b}−{c}}{{a}}+\frac{{c}−{a}}{{b}}\:+\frac{{a}−{b}}{{c}}\right)=\mathrm{9} \\ $$
Question Number 36018 Answers: 1 Comments: 0
$${Find}\:{the}\:{value}\:{of} \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {{lim}}\:\frac{{sinx}−\left({sinx}\right)^{{sinx}} }{\mathrm{1}−{sinx}+{lnsinx}} \\ $$
Question Number 36011 Answers: 0 Comments: 2
$$\mathrm{simplify}:\:\:'{interval}\:{number}' \\ $$$$\left(\mathrm{1},\mathrm{6}\right)\cup\left(\mathrm{3},\mathrm{7}\right) \\ $$
Question Number 36010 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)=\:\:\frac{{x}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 36009 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{xdx}}{\left(\mathrm{2}{x}+\mathrm{1}+{i}\right)^{\mathrm{3}} }\:\:{with}\:{i}^{\mathrm{2}} \:=−\mathrm{1}\:. \\ $$
Question Number 35990 Answers: 0 Comments: 2
$${calculate}\:\int_{\mathrm{2}} ^{\mathrm{5}} \:\:\:\:\frac{{xdx}}{\mathrm{2}{x}+\mathrm{1}\:+\sqrt{{x}−\mathrm{1}}} \\ $$
Question Number 35988 Answers: 1 Comments: 2
$${let}\:{f}\left({x}\right)\:=\:\frac{{x}+\mathrm{2}}{{x}^{\mathrm{3}} −\mathrm{4}{x}\:+\mathrm{3}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Pg 1719 Pg 1720 Pg 1721 Pg 1722 Pg 1723 Pg 1724 Pg 1725 Pg 1726 Pg 1727 Pg 1728
Terms of Service
Privacy Policy
Contact: info@tinkutara.com