Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 172
Question Number 205032 Answers: 3 Comments: 1
Question Number 205024 Answers: 0 Comments: 0
Question Number 205021 Answers: 2 Comments: 0
$${x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\mathrm{6}\:=\:\mathrm{0}\:\&\:{x}^{\mathrm{2}} \:+\:{kx}\:+\:\mathrm{1}\:=\:\mathrm{0}\:{have}\:{a}\: \\ $$$${common}\:{root}\:\mathrm{then}\:\:{k}\:=\:? \\ $$
Question Number 205018 Answers: 1 Comments: 2
$$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\:'\mathrm{k}'\:\mathrm{can}\:\mathrm{be}\:\mathrm{expression}\:{x}^{\mathrm{3}} \:+\:{kx}^{\mathrm{2}} \:−\mathrm{7}{x}\:+\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{be}\:\mathrm{resolved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{factors}? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{3} \\ $$
Question Number 205013 Answers: 2 Comments: 0
$${if}\:{y}=\sqrt[{\mathrm{7}}]{{x}}\:{prove}\:{that} \\ $$$${y}^{'} =\frac{\mathrm{1}}{\mathrm{7}\:\sqrt[{\mathrm{7}}]{{x}^{\mathrm{6}} }} \\ $$
Question Number 205001 Answers: 2 Comments: 0
Question Number 204999 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:{x}\in\mathbb{C} \\ $$$${x}^{\mathrm{3}} +\left(\mathrm{4}−\mathrm{3i}\right){x}^{\mathrm{2}} −\left(\mathrm{51}+\mathrm{49i}\right){x}−\mathrm{442}+\mathrm{170i}=\mathrm{0} \\ $$
Question Number 204994 Answers: 2 Comments: 0
Question Number 204991 Answers: 2 Comments: 1
Question Number 204992 Answers: 1 Comments: 0
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{way}\:\mathrm{to}\:\mathrm{integrate}: \\ $$$$\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{ln}\left({x}\right)}}\:{dx} \\ $$$$\mathrm{without}\:\mathrm{hitting}\:\mathrm{the}\:\mathrm{Gauss}\:\mathrm{error}\:\mathrm{function} \\ $$$$\mathrm{or}\:{e}^{{t}^{\mathrm{2}} } \:\mathrm{and}\:{e}^{−{t}^{\mathrm{2}} } \:? \\ $$
Question Number 204985 Answers: 1 Comments: 0
$${Q}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{\mathrm{3}} \right)\left(\mathrm{1}−{x}^{\mathrm{33}} \right)\left(\mathrm{1}−{x}^{\mathrm{333}} \right)}{{lnx}}{dx} \\ $$
Question Number 204979 Answers: 4 Comments: 0
$${factorizar} \\ $$$${x}^{\mathrm{4}} \:+\:\mathrm{1} \\ $$
Question Number 204978 Answers: 1 Comments: 0
Question Number 204970 Answers: 1 Comments: 1
Question Number 204961 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cot}\:\mathrm{3}{x}}\:{dx}\:=\:\: \\ $$
Question Number 204957 Answers: 2 Comments: 0
$$\mathrm{2}×\mathrm{2}\:\mathrm{matrix}\:\boldsymbol{\mathrm{A}}\:\mathrm{and}\:\boldsymbol{\mathrm{B}}\:\mathrm{satisfy}\:\mathrm{that} \\ $$$$\boldsymbol{\mathrm{AB}}+\boldsymbol{\mathrm{A}}=\boldsymbol{\mathrm{BA}}+\boldsymbol{\mathrm{B}}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\left(\boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{B}}\right)^{\mathrm{2}} =\boldsymbol{\mathrm{O}}. \\ $$
Question Number 204948 Answers: 0 Comments: 4
$${prove}\: \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\sqrt[{\mathrm{3}}]{{abc}}\geqslant\mathrm{4} \\ $$$${if} \\ $$$${ab}+{bc}+{ac}=\mathrm{3} \\ $$
Question Number 204947 Answers: 1 Comments: 0
$${f}'\left({x}\right)+\mathrm{4}{x}−\mathrm{6}{x}.{e}^{{x}^{\mathrm{2}} −{f}\left({x}\right)−\mathrm{1}} =\mathrm{0} \\ $$$${f}\left({x}\right)=¿ \\ $$
Question Number 204944 Answers: 1 Comments: 1
Question Number 204941 Answers: 0 Comments: 0
Question Number 205204 Answers: 1 Comments: 0
Question Number 204929 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\prod}}\:\frac{{n}^{\mathrm{2}} −{r}}{{n}^{\mathrm{2}} +{r}}\:\:=\:\:? \\ $$
Question Number 204926 Answers: 0 Comments: 2
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\bigtriangleup\mathrm{ABC} \\ $$$$\left(\mathrm{m}_{\boldsymbol{\mathrm{a}}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{b}}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{c}}} \right)^{\mathrm{2}} \:\geqslant\:\mathrm{9}\sqrt{\mathrm{3}}\:\mathrm{F} \\ $$
Question Number 204921 Answers: 1 Comments: 0
Question Number 204920 Answers: 1 Comments: 0
$$\:\:\:\:\:\mathrm{16}^{\mathrm{y}+\mathrm{x}^{\mathrm{2}} } \:+\:\mathrm{16}^{\mathrm{y}^{\mathrm{2}} +\mathrm{x}} \:=\:\mathrm{1}\: \\ $$$$\:\:\:\:\mathrm{x}+\mathrm{y}\:=? \\ $$
Question Number 204916 Answers: 0 Comments: 8
$$ \\ $$How many axes of symmetry does an open angle have?
Pg 167 Pg 168 Pg 169 Pg 170 Pg 171 Pg 172 Pg 173 Pg 174 Pg 175 Pg 176
Terms of Service
Privacy Policy
Contact: info@tinkutara.com