Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 172

Question Number 202383    Answers: 2   Comments: 0

Show that ((a(√b) − b(√a))/(a(√b) + b(√a))) = (1/(a − b))(a + b − 2(√(ab))).

$$\mathrm{Show}\:\mathrm{that}\:\frac{{a}\sqrt{{b}}\:−\:{b}\sqrt{{a}}}{{a}\sqrt{{b}}\:+\:{b}\sqrt{{a}}}\:=\:\frac{\mathrm{1}}{{a}\:−\:{b}}\left({a}\:+\:{b}\:−\:\mathrm{2}\sqrt{{ab}}\right). \\ $$

Question Number 202376    Answers: 0   Comments: 1

Question Number 202374    Answers: 1   Comments: 2

Question Number 202371    Answers: 2   Comments: 0

If A ∈ M_(2×2) , det(A )≠ 0 , A^( 3) = A^2 +A ⇒ Find the values of det (2A −I )

$$ \\ $$$$\:\:\:{If}\:\:\:\:{A}\:\in\:{M}_{\mathrm{2}×\mathrm{2}} \:,\:{det}\left({A}\:\right)\neq\:\mathrm{0} \\ $$$$\:\:\:\:,\:\:{A}^{\:\mathrm{3}} \:=\:{A}^{\mathrm{2}} \:+{A}\:\Rightarrow\:{Find}\:{the}\: \\ $$$$\:\:\:\:{values}\:{of}\:\:\:{det}\:\left(\mathrm{2}{A}\:−{I}\:\right) \\ $$$$ \\ $$

Question Number 202359    Answers: 1   Comments: 0

2 , 8 , 32 , ... geometfic serie for b_m > 1024 find min(m) = ?

$$\mathrm{2}\:,\:\mathrm{8}\:,\:\mathrm{32}\:,\:...\:\mathrm{geometfic}\:\mathrm{serie} \\ $$$$\mathrm{for}\:\:\:\mathrm{b}_{\boldsymbol{\mathrm{m}}} \:>\:\mathrm{1024}\:\:\:\mathrm{find}\:\:\:\mathrm{min}\left(\mathrm{m}\right)\:=\:? \\ $$

Question Number 202356    Answers: 4   Comments: 0

Find: 1−(sin30°)^2 + (sin30°)^4 − (sin30°)^6 + ...

$$\mathrm{Find}: \\ $$$$\mathrm{1}−\left(\mathrm{sin30}°\right)^{\mathrm{2}} \:+\:\left(\mathrm{sin30}°\right)^{\mathrm{4}} \:−\:\left(\mathrm{sin30}°\right)^{\mathrm{6}} \:+\:... \\ $$

Question Number 202353    Answers: 2   Comments: 0

If 2x = a + (√((4b^3 − a^3 )/(3a))) and 2y = a − (√((4b^3 − a^3 )/(3a))) then show that x^3 + y^3 = b^3 .

$$\mathrm{If}\:\mathrm{2}{x}\:=\:{a}\:+\:\sqrt{\frac{\mathrm{4}{b}^{\mathrm{3}} \:−\:{a}^{\mathrm{3}} }{\mathrm{3}{a}}}\:\mathrm{and} \\ $$$$\mathrm{2}{y}\:=\:{a}\:−\:\sqrt{\frac{\mathrm{4}{b}^{\mathrm{3}} \:−\:{a}^{\mathrm{3}} }{\mathrm{3}{a}}}\:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$${x}^{\mathrm{3}} \:+\:{y}^{\mathrm{3}} \:=\:{b}^{\mathrm{3}} \:. \\ $$

Question Number 202352    Answers: 0   Comments: 9

Question Number 202348    Answers: 1   Comments: 0

Let a,b,c ∈R^+ , a+b+c=3 prove the following inequality (((2a−3)^2 )/b)+(((2b−3)^2 )/c)+(((2c−3)^2 )/a)≥((a^2 +b^2 )/(a+b))+((b^2 +c^2 )/(b+c))+((c^2 +a^2 )/(c+a))

$$ \\ $$$$\mathrm{Let}\:{a},{b},{c}\:\:\in\mathbb{R}^{+} \:,\:{a}+{b}+{c}=\mathrm{3}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inequality} \\ $$$$\frac{\left(\mathrm{2}{a}−\mathrm{3}\right)^{\mathrm{2}} }{{b}}+\frac{\left(\mathrm{2}{b}−\mathrm{3}\right)^{\mathrm{2}} }{{c}}+\frac{\left(\mathrm{2}{c}−\mathrm{3}\right)^{\mathrm{2}} }{{a}}\geqslant\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{a}+{b}}+\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{{b}+{c}}+\frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} }{{c}+{a}} \\ $$

Question Number 202340    Answers: 2   Comments: 0

Question Number 202329    Answers: 0   Comments: 0

Question Number 202328    Answers: 1   Comments: 1

If n ≥ 2 and U_n = (3 + (√5))^n + (3 − (√5))^n then prove that U_(n + 1) = 6U_n − 4U_(n − 1) .

$$\mathrm{If}\:{n}\:\geqslant\:\mathrm{2}\:\mathrm{and}\:\mathrm{U}_{{n}} \:=\:\left(\mathrm{3}\:+\:\sqrt{\mathrm{5}}\right)^{{n}} \:+\:\left(\mathrm{3}\:−\:\sqrt{\mathrm{5}}\right)^{{n}} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{U}_{{n}\:+\:\mathrm{1}} \:=\:\mathrm{6U}_{{n}} \:−\:\mathrm{4U}_{{n}\:−\:\mathrm{1}} \:. \\ $$

Question Number 202326    Answers: 0   Comments: 0

Question Number 202325    Answers: 1   Comments: 0

Question Number 202324    Answers: 2   Comments: 0

Find: (((1/2) + 1 + (3/2) + ... + 16)/((1/4) + (2/4) + (3/4) + ... + 8))

$$\mathrm{Find}:\:\:\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{2}}\:+\:...\:+\:\mathrm{16}}{\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{2}}{\mathrm{4}}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:+\:...\:+\:\mathrm{8}} \\ $$

Question Number 202319    Answers: 0   Comments: 0

Question Number 202315    Answers: 1   Comments: 0

If x : y : z = a : b : c then show that (((a + b + c)/(x + y + z)))^3 = ((abc)/(xyz)) .

$$\mathrm{If}\:{x}\::\:{y}\::\:{z}\:=\:{a}\::\:{b}\::\:{c}\:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$$\left(\frac{{a}\:+\:{b}\:+\:{c}}{{x}\:+\:{y}\:+\:{z}}\right)^{\mathrm{3}} \:=\:\frac{{abc}}{{xyz}}\:. \\ $$

Question Number 202308    Answers: 0   Comments: 1

Question Number 202307    Answers: 3   Comments: 0

Show that ((a^3 + b^3 )/(a^2 + b^2 )) > ((a^2 + b^2 )/(a + b))

$$\mathrm{Show}\:\mathrm{that}\:\frac{{a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} }{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} }\:>\:\frac{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} }{{a}\:+\:{b}} \\ $$

Question Number 202306    Answers: 2   Comments: 0

Find the 2023rd term in the sequence 2,3,5,6,7,8,10,11,12,13,14,15,17,18,... obtained by subtracting integer squares from natural numbers.

$$ \\ $$Find the 2023rd term in the sequence 2,3,5,6,7,8,10,11,12,13,14,15,17,18,... obtained by subtracting integer squares from natural numbers.

Question Number 202303    Answers: 3   Comments: 0

If a_1 = 1 and a_1 ∙ a_2 ∙ ... ∙ a_n = n^2 Find: a_2 + a_(13) = ?

$$\mathrm{If}\:\:\:\mathrm{a}_{\mathrm{1}} \:=\:\mathrm{1}\:\:\:\mathrm{and}\:\:\:\mathrm{a}_{\mathrm{1}} \:\centerdot\:\mathrm{a}_{\mathrm{2}} \:\centerdot\:...\:\centerdot\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:=\:\mathrm{n}^{\mathrm{2}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{a}_{\mathrm{2}} \:+\:\mathrm{a}_{\mathrm{13}} \:=\:? \\ $$

Question Number 202302    Answers: 2   Comments: 0

If ((3cosx + 2sinx)/(cosx − sinx)) = 4 find ctgx = ?

$$\mathrm{If}\:\:\:\frac{\mathrm{3cosx}\:+\:\mathrm{2sinx}}{\mathrm{cosx}\:−\:\mathrm{sinx}}\:=\:\mathrm{4}\:\:\:\mathrm{find}\:\:\:\mathrm{ctgx}\:=\:? \\ $$

Question Number 202300    Answers: 1   Comments: 0

Parvin leaves home to go to school. After walking 3/8 of the way, he remembers that he forgot his book. He goes back home, picks up his book, and arrives at school at the time he was originally supposed to. How many times did Parvin increase his initial speed to reach school on time ?

$$ \\ $$Parvin leaves home to go to school. After walking 3/8 of the way, he remembers that he forgot his book. He goes back home, picks up his book, and arrives at school at the time he was originally supposed to. How many times did Parvin increase his initial speed to reach school on time ?

Question Number 202298    Answers: 1   Comments: 0

x ∈ R Find: max((5/(x^2 − 6x + 11))) = ?

$$\mathrm{x}\:\in\:\mathbb{R} \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{max}}\left(\frac{\mathrm{5}}{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{6x}\:+\:\mathrm{11}}\right)\:=\:? \\ $$

Question Number 202297    Answers: 2   Comments: 0

If a^2 + a = 5 Find ((a^(−b) + a^(1−b) + a^(2−b) )/a^(−b) ) = ?

$$\mathrm{If}\:\:\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{a}\:=\:\mathrm{5} \\ $$$$\mathrm{Find}\:\:\:\frac{\mathrm{a}^{−\boldsymbol{\mathrm{b}}} \:+\:\mathrm{a}^{\mathrm{1}−\boldsymbol{\mathrm{b}}} \:+\:\mathrm{a}^{\mathrm{2}−\boldsymbol{\mathrm{b}}} }{\mathrm{a}^{−\boldsymbol{\mathrm{b}}} }\:=\:? \\ $$

Question Number 202296    Answers: 1   Comments: 0

Find: log_2 (log_3 (log_4 64)) = ?

$$\mathrm{Find}: \\ $$$$\mathrm{log}_{\mathrm{2}} \:\left(\mathrm{log}_{\mathrm{3}} \:\left(\mathrm{log}_{\mathrm{4}} \:\mathrm{64}\right)\right)\:=\:? \\ $$

  Pg 167      Pg 168      Pg 169      Pg 170      Pg 171      Pg 172      Pg 173      Pg 174      Pg 175      Pg 176   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com