Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 172
Question Number 204756 Answers: 1 Comments: 23
$$ \\ $$
Question Number 204754 Answers: 1 Comments: 0
Question Number 204739 Answers: 2 Comments: 0
Question Number 204742 Answers: 1 Comments: 4
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:{x} \\ $$
Question Number 204733 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\frac{\mathrm{59}^{\mathrm{2}} \:+\:\mathrm{48}^{\mathrm{2}} \:+\:\mathrm{41}^{\mathrm{2}} \:−\:\mathrm{30}^{\mathrm{2}} }{\mathrm{68}^{\mathrm{2}} \:+\:\mathrm{52}^{\mathrm{2}} \:+\:\mathrm{32}^{\mathrm{2}} \:−\:\mathrm{48}^{\mathrm{2}} }\:=\:? \\ $$
Question Number 204729 Answers: 1 Comments: 0
Question Number 204753 Answers: 0 Comments: 7
A wave has an amplitude of 20cm from rest. If the angle of oscillation is 30⁰. Find the displacement of the wave.
Question Number 204715 Answers: 2 Comments: 0
$${prove}\:{that} \\ $$$$\overset{\mathrm{1}} {\int}_{\mathrm{0}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{{x}}{dx}=\mathrm{2}\zeta\left(\mathrm{3}\right) \\ $$$$ \\ $$
Question Number 204712 Answers: 5 Comments: 1
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{real}\:\mathrm{solution}\: \\ $$$$\:\:\:\:\sqrt{\mathrm{3x}^{\mathrm{2}} +\mathrm{x}−\mathrm{1}}\:+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}−\mathrm{3}}\:=\: \\ $$$$\:\:\sqrt{\mathrm{3x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{5}}\:+\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{3}}\: \\ $$
Question Number 204707 Answers: 1 Comments: 0
$$\boldsymbol{{integrate}}\:\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{{e}}^{−\boldsymbol{{x}}^{\mathrm{2}} } }{\mathrm{1}+\boldsymbol{{e}}^{\boldsymbol{{x}}} }\boldsymbol{{dx}} \\ $$
Question Number 204706 Answers: 0 Comments: 0
$$\boldsymbol{{evaluate}}\:\int_{\mathrm{0}} ^{\infty} \mathrm{2}^{−\boldsymbol{\Gamma}\left(\boldsymbol{{x}}\right)} \boldsymbol{{dx}} \\ $$
Question Number 204705 Answers: 0 Comments: 1
$$\boldsymbol{{evalute}}\:\int_{\mathrm{0}} ^{\infty} \mathrm{2}^{−\sqrt{\boldsymbol{{tanx}}}} \boldsymbol{{dx}} \\ $$
Question Number 204702 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\mathrm{prove}\:\mathrm{that}\:: \\ $$$$\:\:\:\:\:\:\:\mathrm{cl}\left(\mathbb{Q}×\mathbb{Q}\:\right)\overset{?} {=}\:\mathbb{R}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:{note}:\:\:\:\left({X}\:,{d}\:\right)\:{is}\:{a}\:{metric}\:{space} \\ $$$$\:\:\:\:\:\:\:\:\:\:,\:\:\:{A}\:\subseteq\:{X}\::\:\:\:\:\:{x}\in\:\overset{\:\:−} {{A}}=\mathrm{cl}\left({A}\right)\:\Leftrightarrow\:\forall\:{r}\:>\mathrm{0}\:,\:{B}_{{r}} \:\left({x}\right)\:\cap\:{A}\:\neq\:\phi \\ $$
Question Number 204701 Answers: 3 Comments: 0
Question Number 204717 Answers: 1 Comments: 0
$$\frac{\mathrm{3}^{\mathrm{0}} +\mathrm{3}^{\mathrm{1}} +\mathrm{3}^{\mathrm{2}} \:+.........+\:\mathrm{3}^{\mathrm{200}} }{\mathrm{13}}\:\overset{\mathrm{Remainder}} {=}\:? \\ $$
Question Number 204691 Answers: 1 Comments: 0
$$\sqrt{{a}\boldsymbol{\div}\sqrt{{a}\boldsymbol{\div}\sqrt{{a}\boldsymbol{\div}\centerdot\centerdot\centerdot\boldsymbol{\div}\sqrt{{a}}}}}=? \\ $$
Question Number 204690 Answers: 1 Comments: 0
$$\sqrt[{{p}}]{{a}^{{x}} \boldsymbol{\div}\sqrt[{{q}}]{{b}^{{y}} \boldsymbol{\div}\sqrt[{{r}}]{{c}^{{z}} }}}=? \\ $$
Question Number 204689 Answers: 1 Comments: 0
$${y}=\mid{f}\left({x}\right)\mid\:\:;\:\:\:\:\frac{{dy}}{{dx}}=? \\ $$
Question Number 204688 Answers: 1 Comments: 0
$${f}\left({x}\right)={sgn}\left({x}\right);\:\:\:\:\:{f}^{'} \left({x}\right)=\frac{{d}}{{dx}}\left[{f}\left({x}\right)\right]=? \\ $$
Question Number 204687 Answers: 0 Comments: 0
$$\sqrt{{a}−\sqrt{{b}−\sqrt{{c}}}}=? \\ $$
Question Number 204684 Answers: 0 Comments: 2
Question Number 204674 Answers: 1 Comments: 1
Question Number 204671 Answers: 3 Comments: 0
$${if}\:{f}\left({f}\left({x}\right)\right)={x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4},\:{find}\:{f}\left(\mathrm{1}\right)=? \\ $$
Question Number 204666 Answers: 0 Comments: 0
$$\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{closed}\:\mathrm{curve}: \\ $$$${f}\left(\theta\right)=\left(\mathrm{e}^{\mathrm{i}\theta} \right)^{\left(\mathrm{e}^{\mathrm{i}\theta} \right)} =\mathrm{e}^{−\theta\mathrm{sin}\:\theta} \mathrm{e}^{\mathrm{i}\theta\mathrm{cos}\:\theta} ;\:−\pi<\theta\leqslant\pi \\ $$$${f}:\:\begin{cases}{{x}\left(\theta\right)=\mathrm{e}^{−\theta\mathrm{sin}\:\theta} \mathrm{cos}\:\left(\theta\mathrm{cos}\:\theta\right)}\\{{y}\left(\theta\right)=\mathrm{e}^{−\theta\mathrm{sin}\:\theta} \mathrm{sin}\:\left(\theta\mathrm{cos}\:\theta\right)}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{area} \\ $$
Question Number 204664 Answers: 2 Comments: 0
$$\:\:\mathrm{8}+\sqrt{\mathrm{8}^{\mathrm{2}} +\sqrt{\mathrm{8}^{\mathrm{4}} +\sqrt{\mathrm{8}^{\mathrm{8}} +\sqrt{\mathrm{8}^{\mathrm{16}} +\sqrt{...}}}}}\:=\:?\: \\ $$
Question Number 204663 Answers: 1 Comments: 0
Pg 167 Pg 168 Pg 169 Pg 170 Pg 171 Pg 172 Pg 173 Pg 174 Pg 175 Pg 176
Terms of Service
Privacy Policy
Contact: info@tinkutara.com