Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 172

Question Number 204244    Answers: 2   Comments: 0

Question Number 204236    Answers: 1   Comments: 1

Helpful questionfor Olympiads, Find Sol^n .

$$\boldsymbol{{Helpful}}\:\boldsymbol{{questionfor}}\:\boldsymbol{{Olympiads}},\:\boldsymbol{{Find}}\:\boldsymbol{{Sol}}^{\boldsymbol{{n}}} . \\ $$

Question Number 204233    Answers: 2   Comments: 0

Question Number 204230    Answers: 1   Comments: 10

what does mean that we say C^° =F^° in −40?

$${what}\:{does}\:{mean}\:{that}\:{we}\:{say}\:{C}^{°} ={F}^{°} \\ $$$${in}\:−\mathrm{40}? \\ $$

Question Number 204270    Answers: 2   Comments: 0

Question Number 204218    Answers: 2   Comments: 0

Question Number 204211    Answers: 2   Comments: 0

Question Number 204205    Answers: 4   Comments: 0

Question Number 204227    Answers: 3   Comments: 0

Question Number 204197    Answers: 2   Comments: 0

Question Number 204187    Answers: 2   Comments: 0

If p , q , r >0 , pqr= 1 ⇒ min((( p^3 )/(q+r)) + (q^( 3) /(p+r)) +(r^3 /(p+q)) )=? ∗ give a reason ∗

$$ \\ $$$$\:\:\:\:\:\:{If}\:\:\:{p}\:,\:{q}\:,\:{r}\:>\mathrm{0}\:,\:\:{pqr}=\:\mathrm{1} \\ $$$$\:\:\:\:\: \\ $$$$\:\Rightarrow\:\:{min}\left(\frac{\:{p}^{\mathrm{3}} }{{q}+{r}}\:+\:\frac{{q}^{\:\mathrm{3}} }{{p}+{r}}\:+\frac{{r}^{\mathrm{3}} }{{p}+{q}}\:\right)=? \\ $$$$\:\:\:\ast\:{give}\:{a}\:{reason}\:\ast \\ $$

Question Number 204180    Answers: 1   Comments: 0

Solve this. ((x+y−a)/(x+y−b)) ∙ (dy/dx) = ((x+y+a)/(x+y+b))

$$\mathrm{Solve}\:\:\mathrm{this}. \\ $$$$ \\ $$$$\frac{{x}+{y}−{a}}{{x}+{y}−{b}}\:\centerdot\:\frac{{dy}}{{dx}}\:=\:\frac{{x}+{y}+{a}}{{x}+{y}+{b}} \\ $$

Question Number 204179    Answers: 2   Comments: 0

Question Number 204171    Answers: 1   Comments: 1

Question Number 204168    Answers: 1   Comments: 1

Question Number 204158    Answers: 2   Comments: 2

Question Number 204157    Answers: 0   Comments: 2

hello frinds I have a question when the most accurate math sofward it solves the most complex math problems .what is the need for us to spend hours to solve that? (Ofcourse i myself love math) (sorry i′m bad in english)

$${hello}\:{frinds} \\ $$$${I}\:{have}\:{a}\:{question} \\ $$$${when}\:{the}\:{most}\:{accurate}\:{math}\:{sofward} \\ $$$${it}\:{solves}\:{the}\:{most}\:{complex}\:{math} \\ $$$${problems}\:.{what}\:{is}\:{the}\:{need}\:{for}\:{us} \\ $$$${to}\:{spend}\:{hours}\:{to}\:{solve}\:{that}? \\ $$$$\left({Ofcourse}\:{i}\:{myself}\:{love}\:{math}\right) \\ $$$$\left({sorry}\:{i}'{m}\:{bad}\:{in}\:{english}\right) \\ $$

Question Number 204152    Answers: 2   Comments: 0

the maximum value of f(x,y) = xy−x^3 y^2 attained over the square 0≤x≤1;0≤y≤1 is

$$\:\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\mathrm{xy}−\mathrm{x}^{\mathrm{3}} \mathrm{y}^{\mathrm{2}} \\ $$$$\:\mathrm{attained}\:\mathrm{over}\:\mathrm{the}\:\mathrm{square}\:\mathrm{0}\leqslant\mathrm{x}\leqslant\mathrm{1};\mathrm{0}\leqslant\mathrm{y}\leqslant\mathrm{1}\:\mathrm{is} \\ $$

Question Number 204145    Answers: 1   Comments: 0

Question Number 204142    Answers: 1   Comments: 0

Solve: x^x = 27^(x − 3)

$$\mathrm{Solve}:\:\:\mathrm{x}^{\mathrm{x}} \:\:=\:\:\mathrm{27}^{\mathrm{x}\:\:−\:\:\mathrm{3}} \\ $$

Question Number 204141    Answers: 1   Comments: 0

Question Number 204129    Answers: 2   Comments: 0

a , b , x , y ∈ R a + b = 23 ax + by = 79 ax^2 + by^2 = 217 ax^3 + by^3 = 661 Find: ax^4 + by^4 = ?

$$\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{x}\:,\:\mathrm{y}\:\in\:\mathbb{R} \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:=\:\mathrm{23} \\ $$$$\mathrm{ax}\:+\:\mathrm{by}\:=\:\mathrm{79} \\ $$$$\mathrm{ax}^{\mathrm{2}} \:+\:\mathrm{by}^{\mathrm{2}} \:=\:\mathrm{217} \\ $$$$\mathrm{ax}^{\mathrm{3}} \:+\:\mathrm{by}^{\mathrm{3}} \:=\:\mathrm{661} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{by}^{\mathrm{4}} \:=\:? \\ $$

Question Number 204123    Answers: 2   Comments: 1

Question Number 204117    Answers: 0   Comments: 4

solve for θ in terms of y when y = e^θ (cosθ+sinθ)

$${solve}\:{for}\:\theta\:{in}\:{terms}\:{of}\:{y}\:{when}\:{y}\:=\:{e}^{\theta} \left({cos}\theta+{sin}\theta\right)\:\:\: \\ $$

Question Number 204174    Answers: 1   Comments: 0

Question Number 204105    Answers: 3   Comments: 0

find the maximum of (1 + cosx) sinx without derivative.

$$\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:\left(\mathrm{1}\:+\:\mathrm{cos}{x}\right)\:\mathrm{sin}{x} \\ $$$$\mathrm{without}\:\mathrm{derivative}. \\ $$

  Pg 167      Pg 168      Pg 169      Pg 170      Pg 171      Pg 172      Pg 173      Pg 174      Pg 175      Pg 176   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com