Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1714

Question Number 34672    Answers: 0   Comments: 0

prove that ∀n∈N ∣sin(nx)∣≤n∣sinx∣ .

$${prove}\:{that}\:\forall{n}\in{N}\:\:\:\mid{sin}\left({nx}\right)\mid\leqslant{n}\mid{sinx}\mid\:. \\ $$

Question Number 34671    Answers: 0   Comments: 0

calculste Σ_(n=1) ^∞ arctan((2/n^2 )).

$${calculste}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{arctan}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right). \\ $$

Question Number 34669    Answers: 0   Comments: 1

let P(x)=(1+x+ix^2 )^n −(1+x −ix^2 )^n 1) find the roots of P(x) 2) factorize inside C[x] P(x) 3) factorize indide R[x] P(x).

$${let}\:{P}\left({x}\right)=\left(\mathrm{1}+{x}+{ix}^{\mathrm{2}} \right)^{{n}} \:−\left(\mathrm{1}+{x}\:−{ix}^{\mathrm{2}} \right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{inside}\:{C}\left[{x}\right]\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{factorize}\:{indide}\:{R}\left[{x}\right]\:{P}\left({x}\right). \\ $$

Question Number 34668    Answers: 0   Comments: 0

find the roots of?p(x) = x^(2n) −2x^n cos(nθ) +1 2)?factorize p(x)

$${find}\:{the}\:{roots}\:{of}?{p}\left({x}\right)\:=\:{x}^{\mathrm{2}{n}} \:−\mathrm{2}{x}^{{n}} \:{cos}\left({n}\theta\right)\:+\mathrm{1} \\ $$$$\left.\mathrm{2}\right)?{factorize}\:{p}\left({x}\right)\: \\ $$

Question Number 34667    Answers: 0   Comments: 0

solve (x+1)^n = e^(2ina) then find the value of P_n = Π_(k=0) ^(n−1) sin(a +((kπ)/n))

$${solve}\:\:\left({x}+\mathrm{1}\right)^{{n}} \:=\:{e}^{\mathrm{2}{ina}} \:\:\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$${P}_{{n}} =\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left({a}\:+\frac{{k}\pi}{{n}}\right) \\ $$

Question Number 34666    Answers: 0   Comments: 0

simplify sin^2 ( ((arccosx)/2))

$${simplify}\:{sin}^{\mathrm{2}} \left(\:\frac{{arccosx}}{\mathrm{2}}\right) \\ $$

Question Number 34665    Answers: 0   Comments: 0

simplify sin (2arcsinx)

$${simplify}\:\:{sin}\:\left(\mathrm{2}{arcsinx}\right) \\ $$

Question Number 34664    Answers: 0   Comments: 0

simplify g(x)= arctan((1/(2x^2 ))) −arctan((x/(x+1))) +arctan(((x−1)/x))

$${simplify} \\ $$$${g}\left({x}\right)=\:{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\right)\:−{arctan}\left(\frac{{x}}{{x}+\mathrm{1}}\right)\:+{arctan}\left(\frac{{x}−\mathrm{1}}{{x}}\right) \\ $$

Question Number 34663    Answers: 0   Comments: 0

simplify f(x)=arcsin((√(1−x^2 ))) −arctan((√((1−x)/(1+x))))

$${simplify}\: \\ $$$${f}\left({x}\right)={arcsin}\left(\sqrt{\left.\mathrm{1}−{x}^{\mathrm{2}} \right)}\:\:−{arctan}\left(\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}\right)\right. \\ $$

Question Number 34662    Answers: 0   Comments: 0

calculate I(a) =∫_(1/a) ^a ((ln(x))/(1+x^2 )) dx with a>0 2) calculate ∫_0 ^(+∞) ((ln(x))/(1+x^2 )) dx .

$${calculate}\:{I}\left({a}\right)\:\:=\int_{\frac{\mathrm{1}}{{a}}} ^{{a}} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:. \\ $$

Question Number 34661    Answers: 0   Comments: 0

let f(x)= ∫_0 ^1 (e^(−(1+t^2 )x) /(1+t^2 )) dt find a simple form of f(x)

$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{−\left(\mathrm{1}+{t}^{\mathrm{2}} \right){x}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:{find}\:{a}\:{simple}\:{form}\:{of} \\ $$$${f}\left({x}\right) \\ $$

Question Number 34653    Answers: 0   Comments: 0

Question Number 34647    Answers: 2   Comments: 0

if xsin^3 θ + ycos^3 θ=sinθcosθ and xsinθ −ycosθ=0 prove that x^2 + y^2 =1

$${if}\:\:\:{xsin}^{\mathrm{3}} \theta\:+\:{ycos}^{\mathrm{3}} \theta={sin}\theta{cos}\theta \\ $$$${and}\:{xsin}\theta\:−{ycos}\theta=\mathrm{0} \\ $$$${prove}\:{that}\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} =\mathrm{1} \\ $$

Question Number 34646    Answers: 1   Comments: 0

show that 2tan^(−1) 2 + tan^(−1) 3= Π +tan^(−1) (1/3)

$${show}\:{that}\:\mathrm{2}{tan}^{−\mathrm{1}} \mathrm{2}\:+\:{tan}^{−\mathrm{1}} \mathrm{3}= \\ $$$$\Pi\:+{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}} \\ $$

Question Number 34645    Answers: 0   Comments: 0

show that 2tan^(−1) 2 + tan^(−1) 3= Π +tan^(−1) (1/3)

$${show}\:{that}\:\mathrm{2}{tan}^{−\mathrm{1}} \mathrm{2}\:+\:{tan}^{−\mathrm{1}} \mathrm{3}= \\ $$$$\Pi\:+{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}} \\ $$

Question Number 34639    Answers: 2   Comments: 0

Question Number 34635    Answers: 2   Comments: 4

calculate A(α) = ∫_0 ^1 ln(1+αix)dx 2) calculate ∫_0 ^1 ln(1+ix) dx (i^2 =−1)

$${calculate}\:{A}\left(\alpha\right)\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+\alpha{ix}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{ix}\right)\:{dx}\:\:\:\:\left({i}^{\mathrm{2}} \:=−\mathrm{1}\right) \\ $$

Question Number 34634    Answers: 1   Comments: 1

let f(x)=ln(1+ix) with ∣x∣<1 1) extract Re(f(x)) and Im(f(x)) 2) developp f(x) at integr serie.

$${let}\:{f}\left({x}\right)={ln}\left(\mathrm{1}+{ix}\right)\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{extract}\:{Re}\left({f}\left({x}\right)\right)\:{and}\:{Im}\left({f}\left({x}\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\left({x}\right)\:{at}\:{integr}\:{serie}. \\ $$

Question Number 34633    Answers: 0   Comments: 0

let f(α) = ∫_(−∞) ^(+∞) ((arctan(1+αxi))/(1+x^2 ))dx find f(α) .

$${let}\:{f}\left(\alpha\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{1}+\alpha{xi}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${find}\:{f}\left(\alpha\right)\:. \\ $$

Question Number 34632    Answers: 0   Comments: 0

let z∈C developp at integrserie f(z)=ln(1+z) with ∣z∣<1 . 2) give ln(2+i) at form of serie.

$${let}\:{z}\in{C}\:\:{developp}\:{at}\:{integrserie} \\ $$$${f}\left({z}\right)={ln}\left(\mathrm{1}+{z}\right)\:\:{with}\:\mid{z}\mid<\mathrm{1}\:. \\ $$$$\left.\mathrm{2}\right)\:{give}\:{ln}\left(\mathrm{2}+{i}\right)\:{at}\:{form}\:{of}\:{serie}. \\ $$

Question Number 34617    Answers: 2   Comments: 2

Question Number 34615    Answers: 0   Comments: 0

decompose inside R(x) the fraction F(x)= (x^2 /((x+1)^5 ( x+3)^8 ))

$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\:\frac{{x}^{\mathrm{2}} }{\left({x}+\mathrm{1}\right)^{\mathrm{5}} \left(\:{x}+\mathrm{3}\right)^{\mathrm{8}} } \\ $$

Question Number 34608    Answers: 0   Comments: 0

Question Number 34607    Answers: 0   Comments: 0

let p∈C[x] degp=n (x_i )_(1≤k≤n) the roots of p(x) a∈C?/p(a)≠0 1) calculate S_1 = Σ_(k=1) ^n (1/(x_k −a)) interms of p,p^′ and a 2)calculste S_2 =Σ_(k=1) ^n (1/((x_k −a)^2 )) interms of p,p^, p^(′′) and a.

$${let}\:{p}\in{C}\left[{x}\right]\:{degp}={n}\:\:\:\left({x}_{{i}} \right)_{\mathrm{1}\leqslant{k}\leqslant{n}} {the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$${a}\in{C}?/{p}\left({a}\right)\neq\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{S}_{\mathrm{1}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{x}_{{k}} −{a}}\:{interms}\:{of}\:{p},{p}^{'} \:{and}\:{a} \\ $$$$\left.\mathrm{2}\right){calculste}\:{S}_{\mathrm{2}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\left({x}_{{k}} −{a}\right)^{\mathrm{2}} }\:\:{interms}\:{of}\:{p},{p}^{,} \\ $$$${p}^{''} \:{and}\:{a}. \\ $$

Question Number 34606    Answers: 0   Comments: 0

let give p(x)=(x+1)^n −(x−1)^n 1) factorize p(x) inside C[x] 2) find the value of Π_(k=1) ^p cotan(((kπ)/(2p+1)))

$${let}\:{give}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{{n}} \:−\left({x}−\mathrm{1}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\prod_{{k}=\mathrm{1}} ^{{p}} \:\:{cotan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right) \\ $$

Question Number 34605    Answers: 0   Comments: 0

decompose inside R(x) thefraction F(x)= ((x^5 +1)/(x^2^ (x−1)^2 )) .

$${decompose}\:{inside}\:{R}\left({x}\right)\:{thefraction} \\ $$$${F}\left({x}\right)=\:\:\frac{{x}^{\mathrm{5}} \:+\mathrm{1}}{{x}^{\mathrm{2}^{} } \left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$

  Pg 1709      Pg 1710      Pg 1711      Pg 1712      Pg 1713      Pg 1714      Pg 1715      Pg 1716      Pg 1717      Pg 1718   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com