Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1714

Question Number 36784    Answers: 0   Comments: 0

Prove that Σ_(r=0) ^n r ((n),(r) )^2 = n (((2n − 1)),(( n − 1)) )

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{r}\:\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}^{\mathrm{2}} \:=\:{n}\:\begin{pmatrix}{\mathrm{2}{n}\:−\:\mathrm{1}}\\{\:\:{n}\:−\:\mathrm{1}}\end{pmatrix} \\ $$

Question Number 36771    Answers: 0   Comments: 3

i have a suggestion...pls request members of the forum to post four to five question so that we get time to solve them...there is flood of questions...so little time to see all post pls give comment if you agree wkth it...

$${i}\:{have}\:{a}\:{suggestion}...{pls}\:{request}\:{members} \\ $$$${of}\:{the}\:{forum}\:{to}\:{post}\:{four}\:{to}\:{five}\:{question} \\ $$$${so}\:{that}\:{we}\:{get}\:{time}\:{to}\:{solve}\:{them}...{there}\:{is}\: \\ $$$${flood}\:{of}\:{questions}...{so}\:{little}\:{time}\:{to}\:{see}\:{all}\:{post} \\ $$$${pls}\:{give}\:{comment}\:{if}\:{you}\:{agree}\:{wkth}\:{it}... \\ $$

Question Number 36762    Answers: 1   Comments: 2

find A_n = ∫_0 ^(π/4) (cosx +sinx)^n dx.

$${find}\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\left({cosx}\:+{sinx}\right)^{{n}} \:{dx}. \\ $$

Question Number 36755    Answers: 1   Comments: 4

let f(a) = ∫_0 ^1 e^t ln(1+ e^(−at) )dt with a≥0 1) find f(a) 2) calculate f^′ (a) 3) find the value of ∫_0 ^1 e^t ln(1+e^(−3t) )dt .

$${let}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{{t}} {ln}\left(\mathrm{1}+\:{e}^{−{at}} \right){dt}\:\:{with}\:{a}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({a}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{t}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{3}{t}} \right){dt}\:. \\ $$

Question Number 36754    Answers: 1   Comments: 1

calculate ∫_1 ^(+∞) (dx/(x^2 (√(4+x^2 )))) .

$${calculate}\:\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{4}+{x}^{\mathrm{2}} }}\:. \\ $$

Question Number 36753    Answers: 1   Comments: 2

find I_n = ∫_0 ^1 x^n arctan(x)dx .

$${find}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{x}^{{n}} \:{arctan}\left({x}\right){dx}\:. \\ $$

Question Number 36752    Answers: 1   Comments: 4

find ∫ (dx/(arcsinx(√(1−x^2 )))) .

$${find}\:\:\int\:\:\:\frac{{dx}}{{arcsinx}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:. \\ $$

Question Number 36751    Answers: 0   Comments: 0

let f(x)= Σ_(n=1) ^∞ x^n^2 with x∈]−1,1[ prove that f(x) ∼ ((√π)/(2(√(−ln(x))))) (x →1^− )

$$\left.{let}\:\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}^{\mathrm{2}} } \:\:\:{with}\:\:{x}\in\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$${prove}\:{that}\:\:{f}\left({x}\right)\:\sim\:\frac{\sqrt{\pi}}{\mathrm{2}\sqrt{−{ln}\left({x}\right)}}\:\left({x}\:\rightarrow\mathrm{1}^{−} \right) \\ $$

Question Number 36750    Answers: 0   Comments: 0

let f(t)=Σ_(n≥1) (−1)^n ln{1+ (t^2 /(n(1+t^2 )))} 1) study the simple and uniform convergence of Σ f_n 2)study the continuity of f 3) prove that lim_(t→+∞) f(t)=ln((2/π)) .

$${let}\:{f}\left({t}\right)=\sum_{{n}\geqslant\mathrm{1}} \:\left(−\mathrm{1}\right)^{{n}} {ln}\left\{\mathrm{1}+\:\frac{{t}^{\mathrm{2}} }{{n}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\right\} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{simple}\:\:{and}\:{uniform}\:{convergence} \\ $$$${of}\:\Sigma\:{f}_{{n}} \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{continuity}\:{of}\:{f} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:{lim}_{{t}\rightarrow+\infty} \:{f}\left({t}\right)={ln}\left(\frac{\mathrm{2}}{\pi}\right)\:. \\ $$

Question Number 36748    Answers: 0   Comments: 0

let f(x)= Σ_(n=1) ^∞ (((−1)^(n−1) )/(ln(nx))) 1) give D_f and study f on]1,+∞[ 2)study the continjity of f and calculate lim _(x→1) f(x) and lim_(x→+∞) f(x). 3) prove that f is C^1 on ]1,+∞[ .

$${let}\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{ln}\left({nx}\right)} \\ $$$$\left.\mathrm{1}\left.\right)\:{give}\:{D}_{{f}} \:\:{and}\:{study}\:{f}\:{on}\right]\mathrm{1},+\infty\left[\right. \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{continjity}\:{of}\:{f}\:{and}\:{calculate} \\ $$$${lim}\:_{{x}\rightarrow\mathrm{1}} {f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right). \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:{f}\:{is}\:{C}^{\mathrm{1}} \:{on}\:\right]\mathrm{1},+\infty\left[\:.\right. \\ $$

Question Number 36747    Answers: 0   Comments: 1

let f(x)= Σ_(n=1) ^∞ ((sin(nx))/n) x^n 1) prove that f is C^1 on ]−1,1[ 2)calculate f^′ (x) and prove that f(x)=arctan( ((xsinx)/(1−x cosx)))

$${let}\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}}\:{x}^{{n}} \\ $$$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:{f}\:{is}\:{C}^{\mathrm{1}} \:{on}\:\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{'} \left({x}\right)\:{and}\:{prove}\:{that} \\ $$$${f}\left({x}\right)={arctan}\left(\:\frac{{xsinx}}{\mathrm{1}−{x}\:{cosx}}\right) \\ $$

Question Number 36746    Answers: 0   Comments: 0

solve the d.e. y^(′′) (t) +y(t)=Σ_(n=0) ^N a_n cos(nt)

$${solve}\:{the}\:{d}.{e}.\:{y}^{''} \left({t}\right)\:+{y}\left({t}\right)=\sum_{{n}=\mathrm{0}} ^{{N}} \:{a}_{{n}} {cos}\left({nt}\right) \\ $$

Question Number 36745    Answers: 0   Comments: 0

solve the d.e y^(′′) (t) +y(t)=cos(nt)

$${solve}\:{the}\:{d}.{e}\:\:{y}^{''} \left({t}\right)\:+{y}\left({t}\right)={cos}\left({nt}\right) \\ $$

Question Number 36744    Answers: 0   Comments: 0

let f(x)=Σ_(n=1) ^∞ (1/n) cos^n (x)sin(nx) 1)prove the convergence of this serie 2)prove that f is C^2 on R −{kπ,k∈Z}and calculate f^′ (x) 3) give a exprrssion of f.

$${let}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}}\:{cos}^{{n}} \left({x}\right){sin}\left({nx}\right) \\ $$$$\left.\mathrm{1}\right){prove}\:{the}\:{convergence}\:{of}\:{this}\:{serie} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{f}\:{is}\:{C}^{\mathrm{2}} \:{on}\:{R}\:−\left\{{k}\pi,{k}\in{Z}\right\}{and} \\ $$$${calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{give}\:{a}\:{exprrssion}\:{of}\:{f}. \\ $$

Question Number 36742    Answers: 0   Comments: 1

study the convergence of Σ_(n=1) ^∞ (−1)^n ln(1+ (1/(n(1+x)))).

$${study}\:{the}\:{convergence}\:{of}\: \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {ln}\left(\mathrm{1}+\:\frac{\mathrm{1}}{{n}\left(\mathrm{1}+{x}\right)}\right). \\ $$

Question Number 36741    Answers: 1   Comments: 1

calculate S(x)=Σ_(n=0) ^∞ ((sin(nx))/(n!))

$${calculate}\:{S}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({nx}\right)}{{n}!} \\ $$

Question Number 36739    Answers: 0   Comments: 3

If x = a(1 − cosθ)i + asinθ j find the resultant of x in its simplest form.

$$\mathrm{If}\:\:\:\mathrm{x}\:=\:\mathrm{a}\left(\mathrm{1}\:−\:\mathrm{cos}\theta\right)\mathrm{i}\:\:+\:\:\mathrm{asin}\theta\:\mathrm{j} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{resultant}\:\mathrm{of}\:\mathrm{x}\:\mathrm{in}\:\mathrm{its}\:\mathrm{simplest}\:\mathrm{form}. \\ $$

Question Number 36738    Answers: 2   Comments: 3

(1) ∫(dα/((1+sin 2α)^2 ))= (2) ∫(dβ/((1+cos 2β)^2 ))= (3) ∫(dγ/((1+sin 2γ)(1+cos 2γ)))=

$$\left(\mathrm{1}\right)\:\:\:\:\:\int\frac{{d}\alpha}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\alpha\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\int\frac{{d}\beta}{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\beta\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\int\frac{{d}\gamma}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\gamma\right)\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\gamma\right)}= \\ $$

Question Number 36775    Answers: 0   Comments: 0

find the interval of convergence of Σ_(n=1) ^(+∞) (((x−2)^2 )/n)

$$\:{find}\:{the}\:{interval}\:{of}\:{convergence} \\ $$$$\:{of}\:\:\:\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }{{n}} \\ $$

Question Number 36737    Answers: 0   Comments: 1

let g(θ) =∫_0 ^1 ln( 1−e^(iθ) x^2 )dx find a simple form of g(θ) .θ from R.

$${let}\:{g}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\:\mathrm{1}−{e}^{{i}\theta} {x}^{\mathrm{2}} \right){dx} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{g}\left(\theta\right)\:.\theta\:{from}\:{R}. \\ $$

Question Number 36736    Answers: 0   Comments: 1

let f(θ) = ∫_0 ^1 ln(1−e^(iθ) x)dx find a simple form of f(θ)

$${let}\:\:{f}\left(\theta\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}−{e}^{{i}\theta} {x}\right){dx} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left(\theta\right) \\ $$

Question Number 36728    Answers: 1   Comments: 1

the improper integral ∫_0 ^1 (dx/(√(1−x^2 ))) converges to

$${the}\:{improper}\:{integral}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{converges}\:{to} \\ $$

Question Number 36722    Answers: 1   Comments: 0

Question Number 36711    Answers: 0   Comments: 0

The first term in an AP is the 3rd term in A GP , the 5th term is 30 for the AP, and the 12th term of the GP is 64,find the sum to infinity.

$$\:\:{The}\:\:{first}\:{term}\:{in}\:{an}\:{AP}\:{is}\:{the}\: \\ $$$$\mathrm{3}{rd}\:{term}\:{in}\:{A}\:{GP}\:,\:{the}\:\mathrm{5}{th}\:{term}\:{is} \\ $$$$\mathrm{30}\:{for}\:{the}\:{AP},\:{and}\:{the}\:\mathrm{12}{th}\:{term} \\ $$$${of}\:{the}\:{GP}\:{is}\:\mathrm{64},{find}\:{the}\:{sum}\:{to} \\ $$$${infinity}. \\ $$

Question Number 36714    Answers: 0   Comments: 0

Given the matrix (((3c+1 5 )),((c c)) ) is singular find the value of c and find x if y = mx + c are all natural numbers

$${Given}\:{the}\:{matrix} \\ $$$$\begin{pmatrix}{\mathrm{3}{c}+\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{5}\:}\\{{c}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{c}}\end{pmatrix}\:{is}\:{singular}\: \\ $$$${find}\:{the}\:{value}\:{of}\:{c}\:{and}\: \\ $$$${find}\:{x}\:{if}\:{y}\:=\:{mx}\:+\:{c}\:{are}\:{all} \\ $$$${natural}\:{numbers} \\ $$$$ \\ $$

Question Number 36707    Answers: 2   Comments: 1

P=i^2 R then how (dP/P) = 2 (dI/I) ? Similarly P= (V^2 /R) then how (dP/P)=2(dV/V)?

$$\mathrm{P}=\mathrm{i}^{\mathrm{2}} \mathrm{R}\:\mathrm{then}\:\mathrm{how}\:\frac{\mathrm{dP}}{\mathrm{P}}\:=\:\mathrm{2}\:\frac{\mathrm{dI}}{\mathrm{I}}\:? \\ $$$$\mathrm{Similarly}\:\mathrm{P}=\:\frac{\mathrm{V}^{\mathrm{2}} }{\mathrm{R}}\:\mathrm{then}\:\mathrm{how}\:\frac{\mathrm{dP}}{\mathrm{P}}=\mathrm{2}\frac{\mathrm{dV}}{\mathrm{V}}? \\ $$

  Pg 1709      Pg 1710      Pg 1711      Pg 1712      Pg 1713      Pg 1714      Pg 1715      Pg 1716      Pg 1717      Pg 1718   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com