let f(t)=Σ_(n≥1) (−1)^n ln{1+ (t^2 /(n(1+t^2 )))}
1) study the simple and uniform convergence
of Σ f_n
2)study the continuity of f
3) prove that lim_(t→+∞) f(t)=ln((2/π)) .
let f(x)= Σ_(n=1) ^∞ (((−1)^(n−1) )/(ln(nx)))
1) give D_f and study f on]1,+∞[
2)study the continjity of f and calculate
lim _(x→1) f(x) and lim_(x→+∞) f(x).
3) prove that f is C^1 on ]1,+∞[ .
let f(x)=Σ_(n=1) ^∞ (1/n) cos^n (x)sin(nx)
1)prove the convergence of this serie
2)prove that f is C^2 on R −{kπ,k∈Z}and
calculate f^′ (x)
3) give a exprrssion of f.
1) find the value of ∫_0 ^1 ln(1−x^3 )dx then
find the value of ∫_0 ^1 ln(1+x+x^2 )dx
2)find the value of ∫_0 ^1 ln(1+x^3 )dx then
calculate ∫_0 ^1 ln(1−x +x^2 )dx