Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1708

Question Number 36945    Answers: 0   Comments: 0

calulate ∫_0 ^(π/4) (dx/(√(tan(x)(1−tanx))))

$${calulate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{dx}}{\sqrt{{tan}\left({x}\right)\left(\mathrm{1}−{tanx}\right)}} \\ $$

Question Number 36944    Answers: 1   Comments: 1

find ϕ(a) = ∫_a ^(+∞) (dx/((1+x^2 )(√(x^2 −a^2 )))) with a>0

$${find}\:\varphi\left({a}\right)\:=\:\int_{{a}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} \:−{a}^{\mathrm{2}} }}\:\:\:{with}\:{a}>\mathrm{0} \\ $$

Question Number 36943    Answers: 0   Comments: 1

find the value of ∫_0 ^1 ((lnx)/((√x)(1−x)^(3/2) ))dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{lnx}}{\sqrt{{x}}\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx} \\ $$

Question Number 36942    Answers: 1   Comments: 0

let I = ∫_0 ^(π/2) ((cosx)/(√(1+cosx sinx)))dx and J =∫_0 ^(π/2) ((sinx)/(√(1+cosx sinx)))dx prove that I=J then calculate I and J .

$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{cosx}}{\sqrt{\mathrm{1}+{cosx}\:{sinx}}}{dx}\:{and}\:{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sinx}}{\sqrt{\mathrm{1}+{cosx}\:{sinx}}}{dx} \\ $$$${prove}\:{that}\:{I}={J}\:\:{then}\:{calculate}\:{I}\:{and}\:{J}\:. \\ $$

Question Number 36941    Answers: 0   Comments: 1

calculate ∫_0 ^((3π)/4) (dt/((1+sin^2 t)^2 ))

$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{3}\pi}{\mathrm{4}}} \:\:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{sin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} } \\ $$

Question Number 36940    Answers: 0   Comments: 1

find f(a)= ∫_0 ^a arctan((√(a^2 −x^2 )))dx

$${find}\:{f}\left({a}\right)=\:\int_{\mathrm{0}} ^{{a}} \:{arctan}\left(\sqrt{{a}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }\right){dx} \\ $$

Question Number 36939    Answers: 0   Comments: 0

calculate ∫_0 ^1 ^3 (√(x^2 (1−x) )) dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)\:}\:{dx} \\ $$

Question Number 36938    Answers: 0   Comments: 2

1) find f(a) = ∫_0 ^(π/2) (dt/(1+a cost)) 2) find A(θ) =∫_0 ^(π/2) (dt/(1+sinθ cost))

$$\left.\mathrm{1}\right)\:{find}\:\:\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\mathrm{1}+{a}\:{cost}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{sin}\theta\:{cost}} \\ $$

Question Number 36937    Answers: 0   Comments: 1

calculate ∫_0 ^π ((x dx)/(1+cosx))

$${calculate}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{x}\:{dx}}{\mathrm{1}+{cosx}} \\ $$

Question Number 36936    Answers: 0   Comments: 2

calculate I_n = ∫_0 ^π (dx/(1+cos^2 (nx)))

$${calculate}\:{I}_{{n}} \:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\mathrm{1}+{cos}^{\mathrm{2}} \left({nx}\right)} \\ $$

Question Number 36935    Answers: 0   Comments: 0

find all function f R→R wich verify ∀(x,y)∈ R^2 f(x).f(y) =∫_(x−y) ^(x+y) f(t)dt .

$${find}\:{all}\:{function}\:{f}\:{R}\rightarrow{R}\:\:{wich}\:{verify} \\ $$$$\forall\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:\:\:{f}\left({x}\right).{f}\left({y}\right)\:=\int_{{x}−{y}} ^{{x}+{y}} \:{f}\left({t}\right){dt}\:. \\ $$

Question Number 36934    Answers: 0   Comments: 0

calculate [ Σ_(k=1) ^(10^4 ) (1/(√k)) ].

$${calculate}\:\left[\:\sum_{{k}=\mathrm{1}} ^{\mathrm{10}^{\mathrm{4}} } \:\:\frac{\mathrm{1}}{\sqrt{{k}}}\:\right]. \\ $$

Question Number 36933    Answers: 0   Comments: 0

find lim_(n→+∞) Σ_(i=1) ^n Σ_(j=1) ^n (((−1)^(i+j) )/(i+j)) .

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\sum_{{i}=\mathrm{1}} ^{{n}} \:\sum_{{j}=\mathrm{1}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{i}+{j}} }{{i}+{j}}\:. \\ $$

Question Number 36932    Answers: 0   Comments: 0

let f ∈ C^0 ([0,π],R) prove that lim_(n→+∞) ∫_0 ^π f(x) ∣sin(nx)∣dx =(2/π) ∫_0 ^π f(x)dx .

$${let}\:{f}\:\in\:{C}^{\mathrm{0}} \left(\left[\mathrm{0},\pi\right],{R}\right)\:\:{prove}\:{that} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right)\:\mid{sin}\left({nx}\right)\mid{dx}\:=\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}\:. \\ $$

Question Number 36931    Answers: 0   Comments: 2

calculate ∫_0 ^(2π) (dt/(x −e^(it) ))

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dt}}{{x}\:−{e}^{{it}} } \\ $$

Question Number 36930    Answers: 0   Comments: 0

let u_n = (1/(2n+1)) +(1/(2n+3)) +.....+(1/(4n−1)) calculate lim_(n→+∞) u_n .

$${let}\:{u}_{{n}} =\:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:+\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{3}}\:+.....+\frac{\mathrm{1}}{\mathrm{4}{n}−\mathrm{1}} \\ $$$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} . \\ $$

Question Number 36929    Answers: 0   Comments: 0

study and give th graph of the function f(x)=x(1−(1/x))^(x+1) .

$${study}\:{and}\:{give}\:{th}\:{graph}\:{of}\:{the}\:{function} \\ $$$${f}\left({x}\right)={x}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)^{{x}+\mathrm{1}} . \\ $$

Question Number 36928    Answers: 0   Comments: 0

find lim_(x→+∞) { ch(√(x+1)) −ch(√x) }^(1/(√x))

$${find}\:{lim}_{{x}\rightarrow+\infty} \left\{\:{ch}\sqrt{{x}+\mathrm{1}}\:\:−{ch}\sqrt{{x}}\:\right\}^{\frac{\mathrm{1}}{\sqrt{{x}}}} \\ $$

Question Number 36927    Answers: 0   Comments: 0

f is a real function derivable on [0,1] /f(0)=0 and f(1)=1 prove that ∀n∈N ∃ (x_i )_(1≤i≤n) seqence of reals with x_i ≠x_j if i≠j and Σ_(k=1) ^n f^′ (x_k )=n.

$${f}\:{is}\:{a}\:{real}\:{function}\:{derivable}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\:/{f}\left(\mathrm{0}\right)=\mathrm{0}\:{and}\:{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${prove}\:{that}\:\forall{n}\in{N}\:\:\exists\:\:\:\left({x}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \:{seqence}\:{of}\:{reals}\:{with}\:{x}_{{i}} \neq{x}_{{j}} \:{if}\:{i}\neq{j} \\ $$$${and}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{f}^{'} \left({x}_{{k}} \right)={n}. \\ $$

Question Number 36926    Answers: 1   Comments: 0

let f(x) = e^(−x^2 ) 1) prove that f^((n)) (x)=p_n (x)e^(−x^2 ) with p_n is a polynom 2) find a relation of recurrence between the p_n 3) calculate p_1 ,p_2 ,p_3 ,p_4

$${let}\:{f}\left({x}\right)\:=\:{e}^{−{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}^{\left({n}\right)} \left({x}\right)={p}_{{n}} \left({x}\right){e}^{−{x}^{\mathrm{2}} } \:\:{with}\:{p}_{{n}} \:{is}\:{a}\:{polynom} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{relation}\:{of}\:{recurrence}\:{between}\:{the}\:{p}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{p}_{\mathrm{1}} ,{p}_{\mathrm{2}} ,{p}_{\mathrm{3}} ,{p}_{\mathrm{4}} \\ $$

Question Number 36925    Answers: 0   Comments: 1

find lim_(n→+∞) Π_(k=1) ^n (1+(k/n^2 )).

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\prod_{{k}=\mathrm{1}} ^{{n}} \:\:\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right). \\ $$

Question Number 36924    Answers: 0   Comments: 1

calculate lim_(n→+∞) (1/(2i)){ (1+((it)/n))^n −(1−((it)/n))^n )

$${calculate}\:\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{\mathrm{1}}{\mathrm{2}{i}}\left\{\:\left(\mathrm{1}+\frac{{it}}{{n}}\right)^{{n}} \:−\left(\mathrm{1}−\frac{{it}}{{n}}\right)^{{n}} \right) \\ $$

Question Number 36923    Answers: 0   Comments: 1

for t≥0 and f(t)= (t/(√(1+t))) let S_n =Σ_(k=1) ^n f((k/n^2 )) study the convergence of S_n .

$${for}\:{t}\geqslant\mathrm{0}\:{and}\:\:{f}\left({t}\right)=\:\frac{{t}}{\sqrt{\mathrm{1}+{t}}}\:\:{let} \\ $$$${S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{f}\left(\frac{{k}}{{n}^{\mathrm{2}} }\right)\:\:{study}\:{the}\:{convergence}\:{of}\:{S}_{{n}} \:\:. \\ $$

Question Number 36922    Answers: 0   Comments: 1

(u_n )is a sequence and lim_(n→+∞) u_n =l let v_n = (1/2^n ) Σ_(k=0) ^n C_n ^k u_k prove that v_n →l(n→+∞ )

$$\left({u}_{{n}} \right){is}\:{a}\:{sequence}\:{and}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} ={l}\:{let} \\ $$$${v}_{{n}} =\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\sum_{{k}=\mathrm{0}} ^{{n}} {C}_{{n}} ^{{k}} \:{u}_{{k}} \:\:{prove}\:{that}\:{v}_{{n}} \:\rightarrow{l}\left({n}\rightarrow+\infty\:\right) \\ $$

Question Number 36921    Answers: 0   Comments: 0

study the convergence of u_1 =ln(2) and u_n =Σ_(k=1) ^(n−1) ln(2−u_k ).

$${study}\:{the}\:{convergence}\:{of}\:\:{u}_{\mathrm{1}} ={ln}\left(\mathrm{2}\right)\:{and}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {ln}\left(\mathrm{2}−{u}_{{k}} \right). \\ $$

Question Number 36920    Answers: 0   Comments: 1

let α from R and u_n −2cos(α)u_(n−1) +u_(n−2) =0 withn≥2 find u_n and study its convrgence.

$${let}\:\alpha\:{from}\:{R}\:{and}\:\:{u}_{{n}} \:−\mathrm{2}{cos}\left(\alpha\right){u}_{{n}−\mathrm{1}} \:+{u}_{{n}−\mathrm{2}} =\mathrm{0}\:\:\:{withn}\geqslant\mathrm{2} \\ $$$${find}\:{u}_{{n}} \:{and}\:{study}\:{its}\:{convrgence}. \\ $$

  Pg 1703      Pg 1704      Pg 1705      Pg 1706      Pg 1707      Pg 1708      Pg 1709      Pg 1710      Pg 1711      Pg 1712   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com