let give f_α (t)=cos(αt) 2π periodic with t ∈[−π,π]and
α∈ R−Z
1) developp f_α at fourier serie and prove that
cotan(απ)= (1/(απ)) +Σ_(n=1) ^∞ ((2α)/(π(α^2 −n^2 )))
2)let x∈]0,π[ ant g(t)=cotant −(1/t) if t∈]0,x]andg(0)=0
prove that g is continue in[0,x] and find ∫_0 ^x g(t)dt
3)prove that ∀ t∈[0,x] g(t)=2t Σ_(n=1) ^∞ (1/(t^2 −n^2 π^(24) ))
4) chow that Π_(n=1) ^∞ (1−(x^2 /(n^2 π^2 )))= ((sinx)/x) and for x∈]−π,π[
sinx=x Π_(n=1) ^∞ (1−(x^2 /(n^2 π^2 ))) .
let give T_n (x)=cos(n arcosx) with x∈[−1,1]
1) prove that T_n is a polynomial and T_n ∈Z[x]
2)calculate T_1 , T_2 , T_3 ,and T_4
3) prove that T_(n+2) (x)=2x T_(n+1) (x)−T_n (x)
4)find the roots of T_n and factorize T_n (x).
let give f(x)= (1/(1+x^2 )) 1)prove that prove that
f^((n)) (x)=((p_n (x))/((1+x^2 )^(n+1) )) with p_n is a polynomial
2) prove that p_(n+1) (x)=(1+x^2 )p_n ^′ (x) −2(n+1)p_n (x)
3) calculate p_0 (x) ,p_1 (x) ,p_2 (x) ,p_3 (x) .