Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1707

Question Number 36692    Answers: 2   Comments: 1

x^3 +y^3 =5 x^2 +y^2 =3

$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\mathrm{5} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{3} \\ $$

Question Number 36691    Answers: 0   Comments: 2

Question Number 36689    Answers: 0   Comments: 1

1) find the value of ∫_0 ^1 ln(1−x^3 )dx then find the value of ∫_0 ^1 ln(1+x+x^2 )dx 2)find the value of ∫_0 ^1 ln(1+x^3 )dx then calculate ∫_0 ^1 ln(1−x +x^2 )dx

$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{3}} \right){dx}\:{then} \\ $$$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right){dx} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx}\:{then}\: \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}−{x}\:+{x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 36690    Answers: 0   Comments: 1

let f(t) =∫_0 ^1 ln(1 −tx^3 )dx with 0<t≤1 find a simple form of f(t) 2)calculate ∫_0 ^1 ln(2−x^3 )dx .

$${let}\:\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{ln}\left(\mathrm{1}\:−{tx}^{\mathrm{3}} \right){dx}\:\:{with}\:\mathrm{0}<{t}\leqslant\mathrm{1} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right)\: \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{2}−{x}^{\mathrm{3}} \right){dx}\:. \\ $$

Question Number 36677    Answers: 4   Comments: 3

Question Number 36676    Answers: 1   Comments: 3

if z = − 27, find all the root of z in complex plain

$$\mathrm{if}\:\:\mathrm{z}\:=\:−\:\mathrm{27},\:\:\mathrm{find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:\mathrm{z}\:\mathrm{in}\:\mathrm{complex}\:\mathrm{plain} \\ $$

Question Number 36661    Answers: 0   Comments: 2

Question Number 36660    Answers: 1   Comments: 0

Question Number 36649    Answers: 1   Comments: 4

∫ (1/(x^4 +1)) dx

$$\int\:\frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{1}}\:{dx} \\ $$

Question Number 36643    Answers: 2   Comments: 1

∫ (x/(x^4 +x^2 +1)) dx = ?

$$\int\:\frac{{x}}{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}\:=\:? \\ $$

Question Number 36634    Answers: 0   Comments: 5

Question Number 36633    Answers: 0   Comments: 1

calculate ∫_0 ^1 arctan(x^2 +x+1)dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right){dx} \\ $$

Question Number 36630    Answers: 0   Comments: 1

Question Number 36629    Answers: 0   Comments: 0

Question Number 36626    Answers: 0   Comments: 1

Question Number 36625    Answers: 0   Comments: 0

Question Number 36623    Answers: 0   Comments: 0

Question Number 36622    Answers: 0   Comments: 0

Question Number 36613    Answers: 1   Comments: 5

Question Number 36601    Answers: 0   Comments: 2

i want to share proof that universe and mathematics co related...golden ratio...is the proof...fibanocci numbers present in resl life if you want i can share...

$${i}\:{want}\:{to}\:{share}\:{proof}\:{that}\:{universe}\:{and} \\ $$$${mathematics}\:{co}\:{related}...{golden}\:{ratio}...{is}\:{the} \\ $$$${proof}...{fibanocci}\:{numbers}\:{present}\:{in}\:{resl}\:{life} \\ $$$${if}\:{you}\:{want}\:{i}\:{can}\:{share}... \\ $$

Question Number 36597    Answers: 2   Comments: 2

∫(dx/(x^(2/3) (1+x^(2/3) ))) = ?

$$\int\frac{\mathrm{d}{x}}{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{1}+{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)}\:=\:? \\ $$

Question Number 36659    Answers: 1   Comments: 3

∫ (1/(sin^4 x+cos^4 x)) dx

$$\int\:\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{4}} {x}+\mathrm{cos}\:^{\mathrm{4}} {x}}\:{dx} \\ $$

Question Number 36595    Answers: 2   Comments: 0

∫ ((x dx)/(√(1+x^2 +(√((1+x^2 )^3 ))))) = ?

$$\int\:\frac{{x}\:{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} +\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }}}\:=\:? \\ $$

Question Number 36590    Answers: 1   Comments: 1

Question Number 36587    Answers: 0   Comments: 0

Explain why is the wurtz reaction not applicable for odd number of carbon in the preparation of Akanes

$$\boldsymbol{{Explain}}\:\boldsymbol{{why}}\:\boldsymbol{{is}}\:\boldsymbol{{the}}\:\boldsymbol{{wurtz}}\: \\ $$$$\boldsymbol{{reaction}}\:\boldsymbol{{not}}\:\boldsymbol{{applicable}} \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{odd}}\:\boldsymbol{{number}}\:\boldsymbol{{of}}\:\boldsymbol{{carbon}} \\ $$$$\boldsymbol{{in}}\:\boldsymbol{{the}}\:\boldsymbol{{preparation}}\:\boldsymbol{{of}} \\ $$$$\boldsymbol{{Akanes}} \\ $$

Question Number 36576    Answers: 1   Comments: 1

  Pg 1702      Pg 1703      Pg 1704      Pg 1705      Pg 1706      Pg 1707      Pg 1708      Pg 1709      Pg 1710      Pg 1711   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com