Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1707

Question Number 32037    Answers: 0   Comments: 1

let u_n =cos(π(√(n^2 +n+1))) find nature of Σ u_n .

letun=cos(πn2+n+1)findnatureofΣun.

Question Number 32036    Answers: 0   Comments: 0

nature of Σ u_n with u_n = (1/((ln(2))^2 +....+(ln(n))^2 )) .

natureofΣunwithun=1(ln(2))2+....+(ln(n))2.

Question Number 32034    Answers: 0   Comments: 0

let u_n = ∫_0 ^1 (dx/(1+x+...+x^n )) study the convergence of Σ u_n .

letun=01dx1+x+...+xnstudytheconvergenceofΣun.

Question Number 32033    Answers: 0   Comments: 0

let consider the sequence (u_n ) /u_0 ∈[0,1] and ∀n∈N u_(n+1) = u_n −u_n ^2 1) give a simple equivalent of u_n 2) find the nature of Σ u_n .

letconsiderthesequence(un)/u0[0,1]andnNun+1=unun21)giveasimpleequivalentofun2)findthenatureofΣun.

Question Number 32031    Answers: 0   Comments: 1

let f(a) = ∫_0 ^∞ e^(−ax) ln(x)dx with a>0 1) find f(a) 2) find ∫_0 ^∞ e^(−ax) (xlnx)dx 3) calculate ∫_0 ^∞ e^(−2x) (xlnx)dx .

letf(a)=0eaxln(x)dxwitha>01)findf(a)2)find0eax(xlnx)dx3)calculate0e2x(xlnx)dx.

Question Number 32029    Answers: 0   Comments: 0

calculate ∫_0 ^∞ e^(−αx) ln(x) dx with α>0 .

calculate0eαxln(x)dxwithα>0.

Question Number 32028    Answers: 1   Comments: 0

If ((2z_1 )/(3z_2 )) is a purely imaginary number, then find the value of ∣((z_1 −z_2 )/(z_1 +z_2 ))∣ .

If2z13z2isapurelyimaginarynumber,thenfindthevalueofz1z2z1+z2.

Question Number 32026    Answers: 0   Comments: 1

let α>0 prove that Σ_(n=0) ^∞ (((−1)^n )/(n+α)) =∫_0 ^1 (x^(α−1) /(1+x))dx .

letα>0provethatn=0(1)nn+α=01xα11+xdx.

Question Number 32025    Answers: 0   Comments: 2

calculate Σ_(n=0) ^∞ (((−1)^n )/(4n+1)) .

calculaten=0(1)n4n+1.

Question Number 32008    Answers: 1   Comments: 3

lim_(n→∞) [((1/n))^n +((2/n))^n +..+((n/n))^n ]=...

limn[(1n)n+(2n)n+..+(nn)n]=...

Question Number 32002    Answers: 1   Comments: 0

If z^3 =z^ prove then ∣z∣=1.

Ifz3=z¯provethenz∣=1.

Question Number 31991    Answers: 0   Comments: 1

g_n =(√(g_(n−1) +g_(n−2) )) g_1 =1 g_2 =3 g_n =..

gn=gn1+gn2g1=1g2=3gn=..

Question Number 31990    Answers: 1   Comments: 3

a_n =2a_(n−1) +3a_(n−2) a_0 =1 a_1 =2 a_n =...

an=2an1+3an2a0=1a1=2an=...

Question Number 31984    Answers: 0   Comments: 1

study the covergence of Σ u_n with u_n =^n (√(n/(n+1))) −1 .

studythecovergenceofΣunwithun=nnn+11.

Question Number 31983    Answers: 0   Comments: 2

calculate Σ_(n=0) ^∞ ((n^2 −2)/(n!)) .

calculaten=0n22n!.

Question Number 31982    Answers: 0   Comments: 2

find the value of Σ_(n=0) ^∞ (((−1)^n )/((2n+1)(2n+3))) .

findthevalueofn=0(1)n(2n+1)(2n+3).

Question Number 31981    Answers: 0   Comments: 1

find the nature of Σ_(n≥2) (1/(nln(n))) .

findthenatureofn21nln(n).

Question Number 31980    Answers: 0   Comments: 0

let −1<x<1 calculate Σ_(n=1) ^∞ (x^n /((1−x^n )(1−x^(n+1) ))) .

let1<x<1calculaten=1xn(1xn)(1xn+1).

Question Number 31979    Answers: 0   Comments: 1

calculate Σ_(n=2) ^∞ (1/((n^2 −1)^2 )) .

calculaten=21(n21)2.

Question Number 31978    Answers: 1   Comments: 0

find the value of Σ_(n=0) ^∞ (1/((2n+1)(2n+3)(2n+5))).

findthevalueofn=01(2n+1)(2n+3)(2n+5).

Question Number 31977    Answers: 1   Comments: 2

find the value of Σ_(n=0) ^∞ (1/((2n+1)(2n+3)))

findthevalueofn=01(2n+1)(2n+3)

Question Number 31976    Answers: 0   Comments: 0

let u_n =^(n+1) (√(n+1)) −^n (√n) find radius of convergence for Σ u_n z^n (z∈C).

letun=n+1n+1nnfindradiusofconvergenceforΣunzn(zC).

Question Number 31975    Answers: 0   Comments: 0

let u_n = ∫_1 ^∞ e^(−t^n ) dt 1) calculate lim_(n→∞) u_n 2)find a equivalent of u_n (n→∞) 3)find the radius of convergence of Σ u_n x^n .

letun=1etndt1)calculatelimnun2)findaequivalentofun(n)3)findtheradiusofconvergenceofΣunxn.

Question Number 31974    Answers: 0   Comments: 0

1)find I(p,q) = ∫_0 ^1 t^p (1−t)^q dt with pand q integrs 2) find the nature of Σ I_((n,n))

1)findI(p,q)=01tp(1t)qdtwithpandqintegrs2)findthenatureofΣI(n,n)

Question Number 31973    Answers: 0   Comments: 0

let give the sequence (u_n ) / u_0 =1 and u_1 =−1 and u_(n+2) = 2u_(n+1 ) −u_n .find the radius of convegence for this serie.

letgivethesequence(un)/u0=1andu1=1andun+2=2un+1un.findtheradiusofconvegenceforthisserie.

Question Number 31972    Answers: 0   Comments: 1

solve inside ]−1,1[ the d.e. (√(1−x^2 )) y^′ +y =e^(−2x) .

solveinside]1,1[thed.e.1x2y+y=e2x.

  Pg 1702      Pg 1703      Pg 1704      Pg 1705      Pg 1706      Pg 1707      Pg 1708      Pg 1709      Pg 1710      Pg 1711   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com