Question and Answers Forum |
AllQuestion and Answers: Page 1707 |
let u_n =cos(π(√(n^2 +n+1))) find nature of Σ u_n . |
nature of Σ u_n with u_n = (1/((ln(2))^2 +....+(ln(n))^2 )) . |
let u_n = ∫_0 ^1 (dx/(1+x+...+x^n )) study the convergence of Σ u_n . |
let consider the sequence (u_n ) /u_0 ∈[0,1] and ∀n∈N u_(n+1) = u_n −u_n ^2 1) give a simple equivalent of u_n 2) find the nature of Σ u_n . |
let f(a) = ∫_0 ^∞ e^(−ax) ln(x)dx with a>0 1) find f(a) 2) find ∫_0 ^∞ e^(−ax) (xlnx)dx 3) calculate ∫_0 ^∞ e^(−2x) (xlnx)dx . |
calculate ∫_0 ^∞ e^(−αx) ln(x) dx with α>0 . |
If ((2z_1 )/(3z_2 )) is a purely imaginary number, then find the value of ∣((z_1 −z_2 )/(z_1 +z_2 ))∣ . |
let α>0 prove that Σ_(n=0) ^∞ (((−1)^n )/(n+α)) =∫_0 ^1 (x^(α−1) /(1+x))dx . |
calculate Σ_(n=0) ^∞ (((−1)^n )/(4n+1)) . |
lim_(n→∞) [((1/n))^n +((2/n))^n +..+((n/n))^n ]=... |
If z^3 =z^ prove then ∣z∣=1. |
g_n =(√(g_(n−1) +g_(n−2) )) g_1 =1 g_2 =3 g_n =.. |
a_n =2a_(n−1) +3a_(n−2) a_0 =1 a_1 =2 a_n =... |
study the covergence of Σ u_n with u_n =^n (√(n/(n+1))) −1 . |
calculate Σ_(n=0) ^∞ ((n^2 −2)/(n!)) . |
find the value of Σ_(n=0) ^∞ (((−1)^n )/((2n+1)(2n+3))) . |
find the nature of Σ_(n≥2) (1/(nln(n))) . |
let −1<x<1 calculate Σ_(n=1) ^∞ (x^n /((1−x^n )(1−x^(n+1) ))) . |
calculate Σ_(n=2) ^∞ (1/((n^2 −1)^2 )) . |
find the value of Σ_(n=0) ^∞ (1/((2n+1)(2n+3)(2n+5))). |
find the value of Σ_(n=0) ^∞ (1/((2n+1)(2n+3))) |
let u_n =^(n+1) (√(n+1)) −^n (√n) find radius of convergence for Σ u_n z^n (z∈C). |
let u_n = ∫_1 ^∞ e^(−t^n ) dt 1) calculate lim_(n→∞) u_n 2)find a equivalent of u_n (n→∞) 3)find the radius of convergence of Σ u_n x^n . |
1)find I(p,q) = ∫_0 ^1 t^p (1−t)^q dt with pand q integrs 2) find the nature of Σ I_((n,n)) |
let give the sequence (u_n ) / u_0 =1 and u_1 =−1 and u_(n+2) = 2u_(n+1 ) −u_n .find the radius of convegence for this serie. |
solve inside ]−1,1[ the d.e. (√(1−x^2 )) y^′ +y =e^(−2x) . |
Pg 1702 Pg 1703 Pg 1704 Pg 1705 Pg 1706 Pg 1707 Pg 1708 Pg 1709 Pg 1710 Pg 1711 |