in question 34992 this had to be solved:
t^4 +8t^3 +2t^2 −8t+1=0
here another concept worked (I tried some)
t_1 =a+b+c+d
t_2 =a+b−c−d
t_3 =a−b+c−d
t_3 =a−b−c+d
(t−t_1 )(t−t_2 )(t−t_3 )(t−t_4 )=0
leads to
t^4 −4at^3 +2(3a^2 −b^2 −c^2 −d^2 )t^2 +
+4(a(−a^2 +b^2 +c^2 +d^2 )−2bcd)t+
+a^4 +b^4 +c^4 +d^4 −2(a^2 (b^2 +c^2 +d^2 )+b^2 (c^2 +d^2 )+c^2 d^2 )
1. −4a=8
2. 2(3a^2 −b^2 −c^2 −d^2 )=2
3. 4(a(−a^2 +b^2 +c^2 +d^2 )−2bcd)=−8
4. a^4 +b^4 +c^4 +d^4 −2(a^2 (b^2 +c^2 +d^2 )+b^2 (c^2 +d^2 )+c^2 d^2 )=1
1. a=−2
2. b^2 +c^2 +d^2 =11
3. b^2 +c^2 +d^2 +bcd=5
4. ...
3. −2. bcd=−6
now I tried by chance if there are easy real solutions
b^2 =p, c^2 =q, d^2 =r, 0≤p≤q≤r
p+q+r=11
this leads to
p=2, q=3, p=6
∣b∣=(√2), ∣c∣=(√3), ∣d∣=(√6) with one or three out
of a, b, c negative because of bcd=−6
because of the nature of t_1 , t_2 , t_3 , t_4 these
lead to the same solutions
I took b=−(√2), c=−(√3), d=−(√6)
t_1 =−2−(√2)−(√3)−(√6)
t_2 =−2−(√2)+(√3)+(√6)
t_3 =−2+(√2)−(√3)+(√6)
t_4 =−2+(√2)+(√3)−(√6)
|