Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1706

Question Number 36872    Answers: 0   Comments: 0

Question Number 36871    Answers: 0   Comments: 0

Question Number 36867    Answers: 0   Comments: 0

Question Number 36865    Answers: 0   Comments: 0

Question Number 36862    Answers: 0   Comments: 1

Question Number 36861    Answers: 0   Comments: 0

Question Number 36853    Answers: 0   Comments: 2

Find the laplace of L{((e^(−at) − e^(−bt) )/t)}

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{laplace}\:\mathrm{of}\:\:\:\:\:\mathrm{L}\left\{\frac{\mathrm{e}^{−\mathrm{at}} \:−\:\mathrm{e}^{−\mathrm{bt}} }{\mathrm{t}}\right\} \\ $$

Question Number 36852    Answers: 0   Comments: 0

Question Number 36851    Answers: 1   Comments: 0

Question Number 36855    Answers: 1   Comments: 1

Question Number 36846    Answers: 1   Comments: 6

Question Number 36845    Answers: 0   Comments: 0

Question Number 36844    Answers: 1   Comments: 0

find the sum of 4 digit even numbers formed from the digit 1, 2, 3, 4

$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{4}\:\mathrm{digit}\:\mathrm{even}\:\mathrm{numbers}\:\mathrm{formed}\:\mathrm{from}\:\mathrm{the}\:\mathrm{digit}\:\:\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4} \\ $$

Question Number 36843    Answers: 1   Comments: 1

lim_(x→∞) (x^x^x^(.....) )

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left({x}^{{x}^{{x}^{.....} } } \right) \\ $$

Question Number 36837    Answers: 1   Comments: 1

Σ_(r=0) ^∞ 2^(4r−2)

$$\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{2}^{\mathrm{4}{r}−\mathrm{2}} \: \\ $$

Question Number 36828    Answers: 0   Comments: 7

Question Number 36821    Answers: 2   Comments: 1

>. 2sin((5π)/(12))sin(π/(12)) slove this.?

$$>.\:\mathrm{2}{sin}\frac{\mathrm{5}\pi}{\mathrm{12}}{sin}\frac{\pi}{\mathrm{12}}\:{slove}\:{this}.? \\ $$

Question Number 36820    Answers: 1   Comments: 1

find the value of Σ_(n=2) ^∞ (1/((n−1)^2 (n+1)^2 ))

$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$

Question Number 36819    Answers: 0   Comments: 1

find the value of the sum Σ_(n=1) ^∞ (1/((2n−1)^2 (2n+1)^2 ))

$${find}\:{the}\:{value}\:{of}\:{the}\:{sum}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 36818    Answers: 1   Comments: 1

find f(a) = ∫ (dx/(√(1−ax^2 ))) with a from R .

$${find}\:{f}\left({a}\right)\:=\:\int\:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}−{ax}^{\mathrm{2}} }}\:\:{with}\:{a}\:{from}\:{R}\:. \\ $$

Question Number 36814    Answers: 1   Comments: 0

now the way is clear, also try this one: ∫((cos x)/(sin^2 x (√(sin 2x))))dx

$$\mathrm{now}\:\mathrm{the}\:\mathrm{way}\:\mathrm{is}\:\mathrm{clear},\:\mathrm{also}\:\mathrm{try}\:\mathrm{this}\:\mathrm{one}: \\ $$$$\int\frac{\mathrm{cos}\:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}\:\sqrt{\mathrm{sin}\:\mathrm{2}{x}}}{dx} \\ $$

Question Number 36811    Answers: 1   Comments: 0

∫ ((sin x)/(cos^2 x. (√(cos 2x)))) dx= ?

$$\int\:\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:^{\mathrm{2}} {x}.\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}}\:{dx}=\:? \\ $$

Question Number 36801    Answers: 2   Comments: 0

∫ ((1+x^4 )/((1−x^4 )^(3/2) )) dx = A ∫ A = B Find B ? Assume integration of constant=0.

$$\int\:\frac{\mathrm{1}+{x}^{\mathrm{4}} }{\left(\mathrm{1}−{x}^{\mathrm{4}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:{dx}\:=\:{A}\: \\ $$$$\int\:\mathrm{A}\:=\:\mathrm{B} \\ $$$$\mathrm{Find}\:\mathrm{B}\:? \\ $$$$\mathrm{Assume}\:\mathrm{integration}\:\mathrm{of}\:\mathrm{constant}=\mathrm{0}. \\ $$

Question Number 36799    Answers: 1   Comments: 1

find ∫_0 ^∞ e^t ln(1+e^(−2t) )dt .

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{{t}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{t}} \right){dt}\:. \\ $$

Question Number 36784    Answers: 0   Comments: 0

Prove that Σ_(r=0) ^n r ((n),(r) )^2 = n (((2n − 1)),(( n − 1)) )

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{r}\:\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}^{\mathrm{2}} \:=\:{n}\:\begin{pmatrix}{\mathrm{2}{n}\:−\:\mathrm{1}}\\{\:\:{n}\:−\:\mathrm{1}}\end{pmatrix} \\ $$

Question Number 36771    Answers: 0   Comments: 3

i have a suggestion...pls request members of the forum to post four to five question so that we get time to solve them...there is flood of questions...so little time to see all post pls give comment if you agree wkth it...

$${i}\:{have}\:{a}\:{suggestion}...{pls}\:{request}\:{members} \\ $$$${of}\:{the}\:{forum}\:{to}\:{post}\:{four}\:{to}\:{five}\:{question} \\ $$$${so}\:{that}\:{we}\:{get}\:{time}\:{to}\:{solve}\:{them}...{there}\:{is}\: \\ $$$${flood}\:{of}\:{questions}...{so}\:{little}\:{time}\:{to}\:{see}\:{all}\:{post} \\ $$$${pls}\:{give}\:{comment}\:{if}\:{you}\:{agree}\:{wkth}\:{it}... \\ $$

  Pg 1701      Pg 1702      Pg 1703      Pg 1704      Pg 1705      Pg 1706      Pg 1707      Pg 1708      Pg 1709      Pg 1710   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com