Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1706

Question Number 30177    Answers: 1   Comments: 0

let x∈R and u_n = Π_(k=0) ^n cos((x/2^k )) find a simple form of u_n .

$${let}\:{x}\in{R}\:\:{and}\:{u}_{{n}} =\:\prod_{{k}=\mathrm{0}} ^{{n}} \:{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:{find}\:{a}\:{simple}\:{form}\:{of} \\ $$$${u}_{{n}} . \\ $$

Question Number 30176    Answers: 0   Comments: 0

prove that v_n = Σ_(k=1) ^n (1/(2n+2k +1)) is convergente.

$${prove}\:{that}\:\:{v}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{2}{k}\:+\mathrm{1}}\:{is}\:{convergente}. \\ $$

Question Number 30175    Answers: 0   Comments: 2

prove that u_n = Σ_(k=1) ^n (1/(n+k)) is convergente .

$${prove}\:{that}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{n}+{k}}\:{is}\:{convergente}\:. \\ $$

Question Number 30174    Answers: 0   Comments: 0

let u_n = Σ_(k=1) ^n (1/k) 1. prove that ln(n+1)≤u_n ≤ln(n) +1 2. show that u_n _(n→∞) ∼ ln(n) .

$${let}\:\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$$\mathrm{1}.\:{prove}\:{that}\:{ln}\left({n}+\mathrm{1}\right)\leqslant{u}_{{n}} \leqslant{ln}\left({n}\right)\:+\mathrm{1} \\ $$$$\mathrm{2}.\:{show}\:{that}\:{u}_{{n}} \:\:_{{n}\rightarrow\infty} \sim\:{ln}\left({n}\right)\:\:. \\ $$

Question Number 30193    Answers: 0   Comments: 0

let p_n (x)=−1 +Σ_(k=1) ^k x^k 1) prove that the equation p_n (x)=0 have only one solution x_n ∈[0,1] . 2) prove that (x_n ) is decreasing and minored by (1/2) 3) prove that lim_(n→∞) x_n =(1/2) .

$${let}\:{p}_{{n}} \left({x}\right)=−\mathrm{1}\:+\sum_{{k}=\mathrm{1}} ^{{k}} \:{x}^{{k}} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{the}\:{equation}\:{p}_{{n}} \left({x}\right)=\mathrm{0}\:{have}\:{only}\:{one}\: \\ $$$${solution}\:{x}_{{n}} \in\left[\mathrm{0},\mathrm{1}\right]\:. \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\left({x}_{{n}} \right)\:{is}\:{decreasing}\:{and}\:{minored}\:{by}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:{lim}_{{n}\rightarrow\infty} \:{x}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$

Question Number 30166    Answers: 0   Comments: 3

Question Number 30165    Answers: 0   Comments: 3

Question Number 30160    Answers: 0   Comments: 4

Question Number 30159    Answers: 1   Comments: 1

Question Number 30156    Answers: 1   Comments: 0

If x, y, z are in GP and x+3, y+3, z+3 are in HP, then

$$\mathrm{If}\:\:{x},\:{y},\:{z}\:\mathrm{are}\:\mathrm{in}\:\mathrm{GP}\:\mathrm{and}\:{x}+\mathrm{3},\:{y}+\mathrm{3},\:{z}+\mathrm{3}\:\mathrm{are} \\ $$$$\mathrm{in}\:\mathrm{HP},\:\mathrm{then} \\ $$

Question Number 30148    Answers: 2   Comments: 0

how to solve (√((c−(√(−c)))^2 ))+(√((c+6−(√(−c)))^2 )) 2<a<3, −4<b<−3, c=((a+b)/2)

$${how}\:{to}\:{solve}\:\sqrt{\left({c}−\sqrt{−{c}}\right)^{\mathrm{2}} }+\sqrt{\left({c}+\mathrm{6}−\sqrt{−{c}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{2}<{a}<\mathrm{3},\:\:−\mathrm{4}<{b}<−\mathrm{3},\:\:{c}=\frac{{a}+{b}}{\mathrm{2}} \\ $$

Question Number 30129    Answers: 0   Comments: 1

Question Number 30123    Answers: 0   Comments: 3

find the convergence or divergence Σ_(n = 1) ^∞ (((n − 1)/n))

$$\mathrm{find}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{or}\:\mathrm{divergence}\:\:\:\:\:\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\right) \\ $$

Question Number 30120    Answers: 2   Comments: 1

Question Number 30119    Answers: 2   Comments: 1

Let N= 2^(1224) −1. S= 2^(153) +2^(77) +1. T= 2^(408) −2^(204) +1. then which of the following statment is correct? a) S and T both divide N. b) only S divides N. c) only T divides N. d) Neither S nor T divides N.

$$\mathrm{Let}\:\:\mathrm{N}=\:\mathrm{2}^{\mathrm{1224}} \:−\mathrm{1}. \\ $$$$\mathrm{S}=\:\mathrm{2}^{\mathrm{153}} +\mathrm{2}^{\mathrm{77}} +\mathrm{1}. \\ $$$$\mathrm{T}=\:\mathrm{2}^{\mathrm{408}} −\mathrm{2}^{\mathrm{204}} +\mathrm{1}. \\ $$$$\mathrm{then}\:\mathrm{which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{statment}\:\mathrm{is} \\ $$$$\:\mathrm{correct}? \\ $$$$\left.\mathrm{a}\right)\:\mathrm{S}\:\mathrm{and}\:\mathrm{T}\:\mathrm{both}\:\mathrm{divide}\:\mathrm{N}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{only}\:\mathrm{S}\:\mathrm{divides}\:\mathrm{N}. \\ $$$$\left.\mathrm{c}\right)\:\mathrm{only}\:\mathrm{T}\:\mathrm{divides}\:\mathrm{N}. \\ $$$$\left.\mathrm{d}\right)\:\mathrm{Neither}\:\mathrm{S}\:\mathrm{nor}\:\mathrm{T}\:\mathrm{divides}\:\mathrm{N}. \\ $$

Question Number 30106    Answers: 1   Comments: 0

Question Number 30094    Answers: 0   Comments: 5

Question Number 30092    Answers: 1   Comments: 0

If x+(1/x)=3 find x^5 +(1/x^5 )

$${If}\:{x}+\frac{\mathrm{1}}{{x}}=\mathrm{3}\:{find}\:{x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} } \\ $$

Question Number 30173    Answers: 0   Comments: 1

let u_n = Π_(k=1) ^n (1+(k/n^2 )) 1. verify that x−(x^2 /2) ≤ln(1+x)≤x 2. prove that (u_n ) is convergente and find its limit.

$${let}\:{u}_{{n}} =\:\prod_{{k}=\mathrm{1}} ^{{n}} \:\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right) \\ $$$$\mathrm{1}.\:{verify}\:{that}\:{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\mathrm{2}.\:{prove}\:{that}\:\left({u}_{{n}} \right)\:{is}\:{convergente}\:{and}\:{find}\:{its}\:{limit}. \\ $$

Question Number 30090    Answers: 1   Comments: 0

if ΔABC similar ΔPQR and area of ΔPQR=4area(ΔABC) then AB:PQ is

$$\mathrm{if}\:\Delta\mathrm{ABC}\:\mathrm{similar}\:\Delta\mathrm{PQR}\:\mathrm{and}\:\mathrm{area}\:\mathrm{of}\:\Delta\mathrm{PQR}=\mathrm{4area}\left(\Delta\mathrm{ABC}\right)\:\mathrm{then}\:\mathrm{AB}:\mathrm{PQ}\:\mathrm{is} \\ $$

Question Number 30089    Answers: 0   Comments: 0

prove the convergence or divergence of (((n − 1)/n))_(n = 1) ^∞

$$\mathrm{prove}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{or}\:\mathrm{divergence}\:\mathrm{of}\:\:\:\:\left(\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\right)_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \\ $$

Question Number 30087    Answers: 3   Comments: 0

solve: cos3x.cos^3 x+sin 3x.sin^3 x=0.

$$\mathrm{solve}: \\ $$$$\mathrm{cos3}{x}.{cos}^{\mathrm{3}} {x}+\mathrm{sin}\:\mathrm{3}{x}.\mathrm{sin}\:^{\mathrm{3}} {x}=\mathrm{0}. \\ $$

Question Number 30079    Answers: 4   Comments: 1

Question Number 30054    Answers: 1   Comments: 0

Question Number 30049    Answers: 0   Comments: 1

find Σ_(n=1) ^∞ ((n(n+1))/3^n ) .

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{3}^{{n}} }\:. \\ $$

Question Number 30045    Answers: 1   Comments: 2

  Pg 1701      Pg 1702      Pg 1703      Pg 1704      Pg 1705      Pg 1706      Pg 1707      Pg 1708      Pg 1709      Pg 1710   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com