let give J(x)= (1/π) ∫_0 ^π cos(xcost)dt
1) find J^′ and J^(′′) in form of integrals
2)prove that J^′ (x)=((−x)/π) ∫_0 ^π sin^2 t cos(xcost)dt and J is
solution of d.e. xy^(′′) +y^′ +xy=0
p integr and p≥2
1) prove that ∃c∈ ]0,1[ /
ln(ln(p+1))−ln(lnp) =(1/((p+c)ln(p+c)))
2)prove that ln(ln(p+1))−ln(ln(p))<(1/(plnp))
3) prove that lim_(n→∞) Σ_(k=2) ^n (1/(klnk))=+∞ .