Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1704
Question Number 35294 Answers: 1 Comments: 1
Question Number 35291 Answers: 1 Comments: 1
$${solve}\:\:{in}\:{Z}\:\:{x}^{\mathrm{3}} +\mathrm{6}{y}^{\mathrm{3}} =\mathrm{4}{z}^{\mathrm{3}} \\ $$
Question Number 35290 Answers: 0 Comments: 1
$$\int\frac{{x}+\mathrm{1}}{{x}^{\mathrm{3}} }{dx} \\ $$
Question Number 35319 Answers: 2 Comments: 0
Question Number 35267 Answers: 1 Comments: 0
Question Number 35265 Answers: 0 Comments: 0
$$\mathrm{4}−\mathrm{4}×\mathrm{4}+\mathrm{4}= \\ $$
Question Number 35279 Answers: 0 Comments: 3
Question Number 35256 Answers: 1 Comments: 1
$$\mathrm{Factorize}\::\mathrm{x}^{\mathrm{5}} −\mathrm{y}^{\mathrm{5}} \\ $$
Question Number 35248 Answers: 0 Comments: 1
Question Number 35246 Answers: 1 Comments: 1
$${if}\:{x}^{{p}} \:+\:{y}^{{q}} \:=\left({x}\:+\:{y}\right)^{{p}+{q}} \: \\ $$$${prove}\:{that}\:\frac{{dy}}{{dx}}=\frac{{y}}{{x}} \\ $$
Question Number 35245 Answers: 0 Comments: 7
$${express}\:\frac{\mathrm{7}{x}+\mathrm{4}}{{x}^{\mathrm{3}} \:+{x}^{\mathrm{2}} +\:\mathrm{9}{x}\:+\mathrm{9}}\:{in}\:{partial} \\ $$$${fraction} \\ $$
Question Number 35244 Answers: 0 Comments: 1
$${if}\:\:{y}=\frac{{sin}^{−\mathrm{1}} {x}}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:{show}\:{that}\: \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\frac{{dy}}{{dx}}\:−{xy}=\mathrm{1} \\ $$
Question Number 35242 Answers: 1 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{xdx}}{\mathrm{1}+{sinx}} \\ $$
Question Number 35241 Answers: 2 Comments: 6
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{x}\:{dx}}{\mathrm{3}\:+{cosx}}\:\:. \\ $$
Question Number 35238 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{−\mathrm{3}{x}} \:−{e}^{−\mathrm{2}{x}} }{{x}^{\mathrm{2}} }{dx}\: \\ $$
Question Number 35237 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}} \:−{e}^{−{x}^{\mathrm{2}} } }{{x}}{dx}\:. \\ $$
Question Number 35236 Answers: 0 Comments: 0
$${letf}\left({x}\right)={arctan}\left(\mathrm{1}+{ix}\right)\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${developp}\:{f}\:\:{at}\:{integr}\:{serie}. \\ $$
Question Number 35235 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)=\:{e}^{−\mathrm{2}{x}} \:{arctanx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Question Number 35234 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:={e}^{−{x}^{{n}} } \:\:\:\:\:{with}\:{n}\:{fromN} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 35232 Answers: 0 Comments: 0
$${what}\:{is}\:{the}\:{value}\:{of}\:{cos}\:{z}\:{and}\:{sinz} \\ $$$${if}\:{z}={re}^{{i}\theta} \:\:\:\:{r}>\mathrm{0}\:\:? \\ $$
Question Number 35231 Answers: 0 Comments: 1
$${what}\:{is}\:{the}\:{value}\:{of}\:{cos}\left(\mathrm{1}+{i}\right)\:{and} \\ $$$${cos}\left(\mathrm{1}−{i}\right)? \\ $$
Question Number 35229 Answers: 1 Comments: 2
$${find}\:{the}\:{value}\:{of}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\mathrm{2}+{ia}\right)^{\mathrm{2}} {t}^{\mathrm{2}} } {dt}\:\:\:\:{with}\:{a}\:{from}\:{R}\:\:\:\:\mid{a}\mid<\mathrm{1}. \\ $$
Question Number 35228 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{px}} \:\:\:\frac{{sin}\left({qx}\right)}{\sqrt{{x}}}{dx}\:\:{with}\:{p}>\mathrm{0}\:{and}\:{q}>\mathrm{0} \\ $$
Question Number 35226 Answers: 0 Comments: 4
$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\:\frac{{dx}}{{a}\:{sin}^{\mathrm{2}} {x}\:\:+{cos}^{\mathrm{2}} {x}} \\ $$$${with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{g}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{sin}^{\mathrm{2}} {x}}{\left({a}\:{sin}^{\mathrm{2}} {x}\:+{cos}^{\mathrm{2}} {x}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 35225 Answers: 0 Comments: 4
$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dt}}{{a}\:{cos}^{\mathrm{2}} {t}\:+\:{sin}^{\mathrm{2}} {t}}\:{with}\:{a}\neq\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{g}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}^{\mathrm{2}} {t}}{\left({a}\:{cos}^{\mathrm{2}} {t}\:+{sin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }{dt}\: \\ $$
Question Number 35224 Answers: 1 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{\mathrm{1}+\mathrm{2}{cost}}{\mathrm{5}+\mathrm{4}{cost}}{dt} \\ $$
Pg 1699 Pg 1700 Pg 1701 Pg 1702 Pg 1703 Pg 1704 Pg 1705 Pg 1706 Pg 1707 Pg 1708
Terms of Service
Privacy Policy
Contact: info@tinkutara.com