Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1703

Question Number 37168    Answers: 0   Comments: 0

A stone is thrown into a circular pond of radius 1m.Suppose the stone falls uniformly at random on the area of the pond.What will be the expected distance od the stone from the centre of the pond. a)1/3 b)1/2 c)2/3 d)1/(√2)

$${A}\:{stone}\:{is}\:{thrown}\:{into}\:{a}\:{circular} \\ $$$${pond}\:{of}\:{radius}\:\mathrm{1}{m}.{Suppose}\:{the} \\ $$$${stone}\:{falls}\:{uniformly}\:{at}\:{random} \\ $$$${on}\:{the}\:{area}\:{of}\:{the}\:{pond}.{What} \\ $$$${will}\:{be}\:{the}\:{expected}\:{distance}\:{od} \\ $$$${the}\:{stone}\:{from}\:{the}\:{centre}\:{of}\:{the} \\ $$$${pond}. \\ $$$$ \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left./\mathrm{3}\:{b}\right)\mathrm{1}/\mathrm{2}\:{c}\right)\mathrm{2}/\mathrm{3}\:{d}\right)\mathrm{1}/\sqrt{\mathrm{2}} \\ $$

Question Number 37166    Answers: 0   Comments: 2

if 3x^2 +2αxy+2y^2 +2ax−4y+1 can be resolved into two linear factors, prove that ′α′ is a root of the equation x^2 +4ax+2a^2 +6=0

$${if}\:\:\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}\alpha{xy}+\mathrm{2}{y}^{\mathrm{2}} +\mathrm{2}{ax}−\mathrm{4}{y}+\mathrm{1} \\ $$$${can}\:{be}\:{resolved}\:\:{into}\:\:{two}\:\:{linear} \\ $$$${factors},\:\:{prove}\:\:{that}\:\:'\alpha'\:\:{is}\:{a}\:{root}\: \\ $$$${of}\:{the}\:{equation}\:{x}^{\mathrm{2}} +\mathrm{4}{ax}+\mathrm{2}{a}^{\mathrm{2}} +\mathrm{6}=\mathrm{0} \\ $$

Question Number 37155    Answers: 0   Comments: 4

3cos x−4sin x=tan^2 x locate x.

$$\mathrm{3cos}\:{x}−\mathrm{4sin}\:{x}=\mathrm{tan}\:^{\mathrm{2}} {x} \\ $$$${locate}\:{x}. \\ $$

Question Number 37146    Answers: 0   Comments: 0

Question Number 37143    Answers: 0   Comments: 0

Why are following statements wrong? a) There exists a function with domain R satisfying f(x)<0 ∀x , f′(x)>0∀x and f′′(x)>0∀x. b) If f′′(c)=0 then (c,f(c)) is an inflection point.

$$\mathrm{Why}\:\mathrm{are}\:\mathrm{following}\:\mathrm{statements}\:\mathrm{wrong}? \\ $$$$\left.\mathrm{a}\right)\:\mathrm{There}\:\mathrm{exists}\:\mathrm{a}\:\mathrm{function}\:\mathrm{with}\:\mathrm{domain}\: \\ $$$$\mathrm{R}\:\mathrm{satisfying}\:\mathrm{f}\left(\mathrm{x}\right)<\mathrm{0}\:\forall\mathrm{x}\:,\:\mathrm{f}'\left(\mathrm{x}\right)>\mathrm{0}\forall\mathrm{x}\:\mathrm{and} \\ $$$$\mathrm{f}''\left(\mathrm{x}\right)>\mathrm{0}\forall\mathrm{x}. \\ $$$$ \\ $$$$\left.\mathrm{b}\right)\:\mathrm{If}\:\mathrm{f}''\left(\mathrm{c}\right)=\mathrm{0}\:\mathrm{then}\:\left(\mathrm{c},\mathrm{f}\left(\mathrm{c}\right)\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{inflection} \\ $$$$\mathrm{point}. \\ $$

Question Number 37133    Answers: 0   Comments: 0

Question Number 37132    Answers: 0   Comments: 0

Question Number 37131    Answers: 0   Comments: 2

Question Number 37136    Answers: 0   Comments: 1

Question Number 37139    Answers: 2   Comments: 0

if α , β are the roots of the quadratic equation ax^2 +bx+c =0 then find the quadratic equation whose roots are α^(2 ) , β^2

$${if}\:\alpha\:,\:\beta\:\:{are}\:{the}\:{roots}\:{of}\:{the}\:{quadratic} \\ $$$${equation}\:{ax}^{\mathrm{2}} +{bx}+{c}\:=\mathrm{0}\:{then}\:\:{find} \\ $$$${the}\:{quadratic}\:{equation}\:{whose}\:{roots} \\ $$$${are}\:\:\alpha^{\mathrm{2}\:\:\:} ,\:\beta^{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$

Question Number 37137    Answers: 2   Comments: 4

Find minimum distance between y^2 =8x and x^2 +(y+6)^2 =1.

$$\mathrm{Find}\:\mathrm{minimum}\:\mathrm{distance}\:\mathrm{between} \\ $$$$\mathrm{y}^{\mathrm{2}} =\mathrm{8}{x}\:{and}\:{x}^{\mathrm{2}} +\left({y}+\mathrm{6}\right)^{\mathrm{2}} =\mathrm{1}. \\ $$

Question Number 37129    Answers: 0   Comments: 0

Question Number 37128    Answers: 0   Comments: 0

Question Number 37511    Answers: 0   Comments: 3

To the developer of Tinku Tara: dear sir: for some unknown reasons I don′t get any notification from the app when a post, in which I am involved, has been updated. Where is the problem and how can I solve it? Thank you!

$${To}\:{the}\:{developer}\:{of}\:{Tinku}\:{Tara}: \\ $$$${dear}\:{sir}:\:{for}\:{some}\:{unknown}\:{reasons} \\ $$$${I}\:{don}'{t}\:{get}\:{any}\:{notification}\:{from}\:{the} \\ $$$${app}\:{when}\:{a}\:{post},\:{in}\:{which}\:{I}\:{am}\:{involved}, \\ $$$${has}\:{been}\:{updated}.\:{Where}\:{is}\:{the} \\ $$$${problem}\:{and}\:{how}\:{can}\:{I}\:{solve}\:{it}? \\ $$$${Thank}\:{you}! \\ $$

Question Number 37123    Answers: 0   Comments: 1

draw ΔAB^ C and its image ΔA′B^′ C^′ after a reflection in line y=x if A(0,3),B(3,0),C(3,2).what is the line of symmetry of the two figures?

$${draw}\:\Delta{A}\overset{} {{B}C}\:{and}\:{its}\:{image}\:\:\Delta{A}'{B}^{'} {C}^{'} \: \\ $$$${after}\:{a}\:{reflection}\:{in}\:{line}\:{y}={x} \\ $$$${if}\:{A}\left(\mathrm{0},\mathrm{3}\right),{B}\left(\mathrm{3},\mathrm{0}\right),{C}\left(\mathrm{3},\mathrm{2}\right).{what}\:{is}\:{the} \\ $$$${line}\:{of}\:{symmetry}\:\:{of}\:{the}\:{two}\:{figures}? \\ $$

Question Number 37122    Answers: 0   Comments: 0

draw ΔAB^ C and its image ΔA′B^′ C^′ after a reflection in line y=x if A(0,3),B(3,0),C(3,2).what is the line of symmetry of the two figures?

$${draw}\:\Delta{A}\overset{} {{B}C}\:{and}\:{its}\:{image}\:\:\Delta{A}'{B}^{'} {C}^{'} \: \\ $$$${after}\:{a}\:{reflection}\:{in}\:{line}\:{y}={x} \\ $$$${if}\:{A}\left(\mathrm{0},\mathrm{3}\right),{B}\left(\mathrm{3},\mathrm{0}\right),{C}\left(\mathrm{3},\mathrm{2}\right).{what}\:{is}\:{the} \\ $$$${line}\:{of}\:{symmetry}\:\:{of}\:{the}\:{two}\:{figures}? \\ $$

Question Number 37110    Answers: 1   Comments: 2

prove that (cos𝛝−sin𝛝)^2 +(cosec𝛝+sin𝛝)^2 =2

$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}} \\ $$$$\left(\boldsymbol{\mathrm{cos}\vartheta}−\boldsymbol{\mathrm{sin}\vartheta}\right)^{\mathrm{2}} +\left(\boldsymbol{\mathrm{cosec}\vartheta}+\boldsymbol{\mathrm{sin}\vartheta}\right)^{\mathrm{2}} =\mathrm{2} \\ $$

Question Number 37108    Answers: 1   Comments: 0

If 4x+8cos x+tan x−2sec x−4log {cosx(1+sin x)}≥6 ∀ x ε [0,ψ) then largest value of ψ is ?

$$\mathrm{If}\:\mathrm{4}{x}+\mathrm{8cos}\:{x}+\mathrm{tan}\:{x}−\mathrm{2sec}\:{x}−\mathrm{4log}\:\left\{\mathrm{cos}{x}\left(\mathrm{1}+\mathrm{sin}\:{x}\right)\right\}\geqslant\mathrm{6} \\ $$$$\forall\:{x}\:\epsilon\:\left[\mathrm{0},\psi\right)\:\mathrm{then}\:\mathrm{largest}\:\mathrm{value}\:\mathrm{of}\:\psi\:\mathrm{is}\:? \\ $$

Question Number 37089    Answers: 1   Comments: 10

Question Number 37084    Answers: 0   Comments: 2

solve using matrix method x − y= 4 2x − 3y= 5

$$\:\:{solve}\:{using}\:{matrix}\:{method} \\ $$$$\:\:\:\:\:\:{x}\:−\:{y}=\:\mathrm{4} \\ $$$$\:\:\:\:\:\mathrm{2}{x}\:−\:\mathrm{3}{y}=\:\mathrm{5} \\ $$

Question Number 37081    Answers: 0   Comments: 1

Question Number 37079    Answers: 1   Comments: 0

Question Number 37073    Answers: 2   Comments: 2

Question Number 37071    Answers: 2   Comments: 1

find the value of ∫_0 ^(π/2) ((xdx)/(1+cosx))

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{xdx}}{\mathrm{1}+{cosx}} \\ $$

Question Number 37067    Answers: 2   Comments: 1

find ∫ (dx/((x+1)(√(1+x^2 ))))

$${find}\:\int\:\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$

Question Number 37059    Answers: 0   Comments: 0

  Pg 1698      Pg 1699      Pg 1700      Pg 1701      Pg 1702      Pg 1703      Pg 1704      Pg 1705      Pg 1706      Pg 1707   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com