Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1703
Question Number 30423 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sint}}{{t}^{\alpha} }{dt}\:.\:\alpha{from}\:{R}. \\ $$
Question Number 30422 Answers: 0 Comments: 0
$${integrate}\:{the}\:{d}.{e}.\:{y}^{'} \:\mathrm{2}{ty}=\:{sint} \\ $$
Question Number 30421 Answers: 1 Comments: 0
$${integrate}\:{y}^{'} −\mathrm{2}{ty}\:+{ty}^{\mathrm{2}} =\mathrm{0} \\ $$
Question Number 30420 Answers: 1 Comments: 0
$${integrate}\:{y}^{''} =\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+\left({y}^{'} \right)^{\mathrm{2}} }\:\:\:\:\:. \\ $$
Question Number 30419 Answers: 1 Comments: 0
$${integrate}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{'} \:+{xy}\:−\mathrm{2}{x}=\mathrm{0}\:{with}\:{cond}.{y}\left(\mathrm{1}\right)=\mathrm{0} \\ $$
Question Number 30418 Answers: 0 Comments: 0
$${integrate}\:{y}^{'} \:−\mathrm{2}{xy}\:=\:{sinx}\:{e}^{{x}^{\mathrm{2}} } \:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{1}. \\ $$
Question Number 30417 Answers: 0 Comments: 0
$${integrate}\:{the}\:{d}.{e}.\:\:\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{'} \:−\mathrm{2}{x}\:{y}\:=\:{e}^{−{x}^{\mathrm{2}} } . \\ $$
Question Number 30416 Answers: 0 Comments: 0
$${integrate}\:{the}\:{d}.{e}.\:\:\:{y}^{''} \:−\mathrm{4}{y}\:={x}\:+{e}^{\mathrm{2}{x}} . \\ $$
Question Number 30415 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:{C}_{{n}} ^{{k}} \:\:. \\ $$
Question Number 30414 Answers: 0 Comments: 0
$${find}\:\:{the}\:{value}\:{of}\:\:\sum_{{p}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{p}\:\:} \:\frac{{C}_{{n}} ^{{p}} }{{p}+\mathrm{1}}\:. \\ $$
Question Number 30413 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\:{A}\left(\alpha\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({t}\right)\:{arctant}}{{t}^{\alpha} }{dt} \\ $$
Question Number 30412 Answers: 0 Comments: 0
$$\left.{f}\left.\:{is}\:{a}\:{function}\:{increazing}\left({or}\:{decreazing}\right){on}\:\right]\mathrm{0},\mathrm{1}\right] \\ $$$${prove}\:{that}\:{lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}\sum_{{q}=\mathrm{1}} ^{{n}} {f}\left(\frac{{q}}{{n}}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}. \\ $$$$ \\ $$
Question Number 30411 Answers: 0 Comments: 0
$${solve}\:{the}\:{d}.{e}.\:{y}+{x}\:\left({y}^{'} \right)^{\mathrm{3}} =\mathrm{0} \\ $$
Question Number 30409 Answers: 0 Comments: 0
$${find}\:{lim}_{{n}\rightarrow\infty} \:\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\:{x}^{{i}+{j}} \:\:.{with}\:\mid{x}\mid<\mathrm{1}\:\:. \\ $$
Question Number 30408 Answers: 0 Comments: 0
$${integrate}\:{the}\:{d}.{e}.\:{y}^{'} {sinx}\:−\mathrm{2}{y}\:{cosx}={e}^{−{x}} . \\ $$
Question Number 30407 Answers: 0 Comments: 0
$${let}\:{give}\:{s}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} {nx}^{{n}} \:\:{and}\:{w}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}}{x}^{{n}−\mathrm{1}} \:\:{for}\mid{x}\mid<\mathrm{1} \\ $$$${find}\:{s}\left({x}\right).{w}\left({x}\right)\:{at}\:{form}\:{of}\:{series} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{s}\left({x}\right).{w}\left({x}\right)\:{at}\:{form}\:{of}\:{function}. \\ $$
Question Number 30425 Answers: 1 Comments: 0
$${decompose}\:{inside}\:{R}\left[{x}\right]\: \\ $$$${F}\left({x}\right)=\:\:\:\frac{{x}^{\mathrm{2}{n}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\:\:\:{with}\:{n}\:{from}\:{N}\:{and}\:{n}>\mathrm{0}. \\ $$
Question Number 30405 Answers: 1 Comments: 0
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{13} \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{xy}+{y}^{\mathrm{2}} =\mathrm{35} \\ $$$${find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{y} \\ $$
Question Number 30401 Answers: 0 Comments: 0
$${is}\:{there}\:{exists}\:{a}\:{onto}\:{group}\:{homo}\:{from}\:{D}\mathrm{4}\:{to}\:{Z}\mathrm{4}? \\ $$
Question Number 30390 Answers: 0 Comments: 5
Question Number 30377 Answers: 1 Comments: 1
Question Number 30373 Answers: 0 Comments: 4
Question Number 30436 Answers: 1 Comments: 1
$${let}\:\varphi\left({x}\right)=\mathrm{1}−\mathrm{2}^{\mathrm{1}−{x}} \:\:{prove}\:{that} \\ $$$$\varphi\left({x}\right)=\left({x}−\mathrm{1}\right){ln}\mathrm{2}\:−\frac{\left({ln}\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{2}}\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:+{o}\left(\left({x}−\mathrm{1}\right)^{\mathrm{2}} \right). \\ $$
Question Number 30367 Answers: 0 Comments: 7
Question Number 30366 Answers: 0 Comments: 1
Question Number 30364 Answers: 1 Comments: 2
Pg 1698 Pg 1699 Pg 1700 Pg 1701 Pg 1702 Pg 1703 Pg 1704 Pg 1705 Pg 1706 Pg 1707
Terms of Service
Privacy Policy
Contact: info@tinkutara.com