Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1701

Question Number 30507    Answers: 0   Comments: 0

find ∫_(−π) ^π (dx/(2+cosx)) 2) if (1/(2+cosx))= (a_0 /2) +Σ_(n≥1) a_n cos(nx) find a_0 and a_n .

$${find}\:\int_{−\pi} ^{\pi} \:\:\frac{{dx}}{\mathrm{2}+{cosx}} \\ $$$$\left.\mathrm{2}\right)\:{if}\:\:\frac{\mathrm{1}}{\mathrm{2}+{cosx}}=\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}\geqslant\mathrm{1}} {a}_{{n}} \:{cos}\left({nx}\right)\:\:{find}\:{a}_{\mathrm{0}} \:{and}\:{a}_{{n}} \:. \\ $$

Question Number 30506    Answers: 0   Comments: 0

find f(x) =∫_0 ^x (t/(1+t^4 ))dt with x>0.

$${find}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{t}}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:{with}\:{x}>\mathrm{0}. \\ $$

Question Number 30509    Answers: 0   Comments: 0

f function continue at o and lim_(x→0) ((f(2x)−f(x))/x)=l prove that f is derivable at o and f^′ (0)=l.

$${f}\:{function}\:{continue}\:{at}\:{o}\:{and}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{f}\left(\mathrm{2}{x}\right)−{f}\left({x}\right)}{{x}}={l} \\ $$$${prove}\:{that}\:{f}\:{is}\:{derivable}\:{at}\:{o}\:{and}\:{f}^{'} \left(\mathrm{0}\right)={l}. \\ $$

Question Number 30505    Answers: 0   Comments: 0

find A=Σ_(k=0) ^n ch(a+kb) and B=Σ_(k=0) ^n sh(a+kb).

$${find}\:\:{A}=\sum_{{k}=\mathrm{0}} ^{{n}} \:{ch}\left({a}+{kb}\right)\:{and}\:{B}=\sum_{{k}=\mathrm{0}} ^{{n}} \:{sh}\left({a}+{kb}\right). \\ $$

Question Number 30504    Answers: 1   Comments: 0

find lim_(x→∞) x^2 ( e^(1/x) − e^(1/(x+1)) ) .

$${find}\:{lim}_{{x}\rightarrow\infty} \:{x}^{\mathrm{2}} \left(\:{e}^{\frac{\mathrm{1}}{{x}}} \:\:\:−\:{e}^{\frac{\mathrm{1}}{{x}+\mathrm{1}}} \right)\:. \\ $$

Question Number 30502    Answers: 1   Comments: 0

find lim_(x→0) (sinx +cosx)^(1/x) .

$${find}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \left({sinx}\:+{cosx}\right)^{\frac{\mathrm{1}}{{x}}} \:\:. \\ $$

Question Number 30501    Answers: 0   Comments: 0

let put w=e^(i((2π)/n)) find Σ_(k=1) ^n (x+w^k )^n 2) find Σ_(k=1) ^n n(x+w^k )^(n−1) .

$${let}\:{put}\:{w}={e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:\:\:\:\:{find}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\left({x}+{w}^{{k}} \right)^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} {n}\left({x}+{w}^{{k}} \right)^{{n}−\mathrm{1}} \:\:. \\ $$$$ \\ $$

Question Number 30500    Answers: 0   Comments: 0

find ∫_1 ^(+∞) (dt/(t^2 (1+t^2 ))) .

$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:. \\ $$

Question Number 30499    Answers: 0   Comments: 0

let put F(x)= ∫_0 ^x (√(tant)) dt with x>0 find F(x).

$${let}\:{put}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\sqrt{{tant}}\:\:{dt}\:{with}\:{x}>\mathrm{0}\:\:{find}\:{F}\left({x}\right). \\ $$

Question Number 30498    Answers: 1   Comments: 0

find I= ∫_0 ^(√3) arcsin(((2x)/(1+x^2 )))dx .

$${find}\:\:{I}=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \:{arcsin}\left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}\:\:. \\ $$

Question Number 30497    Answers: 0   Comments: 0

integrate 2xy^′ −y =(2/3) x^(3/2) .

$${integrate}\:\:\mathrm{2}{xy}^{'} \:−{y}\:=\frac{\mathrm{2}}{\mathrm{3}}\:{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:. \\ $$

Question Number 30496    Answers: 0   Comments: 0

find A_n = Σ_(k=0) ^n C_n ^k cos(kx) and B_n =Σ_(k=0) ^n C_n ^k sin(kx)

$${find}\:\:{A}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{cos}\left({kx}\right)\:{and}\:{B}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{sin}\left({kx}\right) \\ $$

Question Number 30495    Answers: 0   Comments: 0

let f(x)=(√(1+x^2 )) find f^((n)) (x) and calculate f^((n)) (0).

$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}\:\:\:\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$

Question Number 30494    Answers: 1   Comments: 0

find I= ∫_0 ^1 (dx/((1+x)(√(1+x^2 )))) .

$${find}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:\:. \\ $$

Question Number 30493    Answers: 0   Comments: 0

study tbe sequence x_(n+1) = (1/(2−x_n )) with x_o ≠2.

$${study}\:{tbe}\:{sequence}\:\:{x}_{{n}+\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}−{x}_{{n}} }\:{with}\:{x}_{{o}} \neq\mathrm{2}. \\ $$

Question Number 30492    Answers: 0   Comments: 0

let (u_(n)) / u_(n+1) = u_n +(1/n) find a equivalent of u_n for n→∞ .

$${let}\:\left({u}_{\left.{n}\right)} \:\:\:/\:\:\:{u}_{{n}+\mathrm{1}} =\:{u}_{{n}} \:\:+\frac{\mathrm{1}}{{n}}\:\:\:{find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \:{for}\right. \\ $$$${n}\rightarrow\infty\:. \\ $$$$ \\ $$

Question Number 30491    Answers: 0   Comments: 0

let A_n = Σ_(k=1) ^n (n/(n^2 +k^2 )) find lim_(n→∞) A_n .

$${let}\:{A}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{n}}{{n}^{\mathrm{2}} \:+{k}^{\mathrm{2}} }\:{find}\:\:{lim}_{{n}\rightarrow\infty} {A}_{{n}} . \\ $$

Question Number 30490    Answers: 0   Comments: 0

f function derivable at o and f(0)=0 let S_n = Σ_(k=0) ^n f((k/n^2 )) .find lim_(n→∞) S_n .

$${f}\:{function}\:{derivable}\:{at}\:{o}\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{0}\:{let} \\ $$$${S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} {f}\left(\frac{{k}}{{n}^{\mathrm{2}} }\right)\:\:.{find}\:{lim}_{{n}\rightarrow\infty} {S}_{{n}} . \\ $$

Question Number 30488    Answers: 0   Comments: 0

let a_n = Π_(k=2) ^n cos((π/2^k )) .prove that (a_n ) ks decreasing. 2) let b_n =a_n cos((π/2^n )) find lim_(n→∞) (a_n −b_n ).

$${let}\:\:\:{a}_{{n}} =\:\prod_{{k}=\mathrm{2}} ^{{n}} \:{cos}\left(\frac{\pi}{\mathrm{2}^{{k}} }\right)\:.{prove}\:{that}\:\left({a}_{{n}} \right)\:{ks}\:{decreasing}. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{b}_{{n}} ={a}_{{n}} {cos}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)\:\:{find}\:{lim}_{{n}\rightarrow\infty} \left({a}_{{n}} \:−{b}_{{n}} \right). \\ $$

Question Number 30487    Answers: 0   Comments: 0

for n≥2 let x_n = ((Σ_(k=1) ^n [lnk])/(ln(n!))) find lim_(n→∞) x_n .

$${for}\:{n}\geqslant\mathrm{2}\:{let}\:\:{x}_{{n}} =\:\:\frac{\sum_{{k}=\mathrm{1}} ^{{n}} \:\left[{lnk}\right]}{{ln}\left({n}!\right)}\:\:{find}\:{lim}_{{n}\rightarrow\infty} {x}_{{n}} \:\:. \\ $$

Question Number 30486    Answers: 0   Comments: 0

let give a_n = Π_(k=1) ^n cos( (π/((k+2)!))) and b_n =Π_(k=1) ^n sin((π/((k+2)!))) 1) find a equivalent foe a_n and b_n 2) find a equivalent of a_n .b_n .

$${let}\:{give}\:{a}_{{n}} =\:\prod_{{k}=\mathrm{1}} ^{{n}} \:{cos}\left(\:\frac{\pi}{\left({k}+\mathrm{2}\right)!}\right)\:{and} \\ $$$${b}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} \:\:{sin}\left(\frac{\pi}{\left({k}+\mathrm{2}\right)!}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{equivalent}\:{foe}\:{a}_{{n}} \:{and}\:{b}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{equivalent}\:{of}\:{a}_{{n}} .{b}_{{n}} . \\ $$

Question Number 30485    Answers: 0   Comments: 1

1) prove that ∀ x>0 (x/(x+1)) ≤ ln(1+x)≤x 2) let put S_n = Π_(k=1) ^n (1 + (k/n)) find lim_(n→∞) S_n .

$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall\:{x}>\mathrm{0}\:\:\:\frac{{x}}{{x}+\mathrm{1}}\:\leqslant\:{ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{put}\:\:{S}_{{n}} =\:\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}\:+\:\frac{{k}}{{n}}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} \:{S}_{{n}} \:\:. \\ $$

Question Number 30484    Answers: 0   Comments: 0

1) prove that if f is decreasing function we have ∫_n ^(n+1) f(t)dt <f(n)< ∫_(n−1) ^n f(t) dt . 2) let put S_n = Σ_(k=1) ^n^2 (1/(2(√k))) .calculate [S_n ].

$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{if}\:{f}\:{is}\:{decreasing}\:{function}\:{we}\:{have} \\ $$$$\:\int_{{n}} ^{{n}+\mathrm{1}} {f}\left({t}\right){dt}\:<{f}\left({n}\right)<\:\int_{{n}−\mathrm{1}} ^{{n}} \:{f}\left({t}\right)\:{dt}\:\:. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{put}\:\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}^{\mathrm{2}} } \:\:\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{k}}}\:.{calculate}\:\left[{S}_{{n}} \right]. \\ $$

Question Number 30483    Answers: 0   Comments: 0

we define the bernoulli polynomial B_n by b_0 =1 and ∀n∈ N^★ b_n ^′ =n b_(n−1) and ∫_0 ^1 b_n (t)dt=0 1) find b_n (1)−b_n (0) for n≥2 2) prove that b_n (x)=(−1)^n b_n (1−x)∀n∈N 3)calculate b_0 , b_1 ,b_2 ,b_3

$${we}\:{define}\:{the}\:{bernoulli}\:{polynomial}\:{B}_{{n}} \:{by} \\ $$$${b}_{\mathrm{0}} =\mathrm{1}\:{and}\:\forall{n}\in\:{N}^{\bigstar} \:\:\:{b}_{{n}} ^{'} ={n}\:{b}_{{n}−\mathrm{1}} \:\:{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {b}_{{n}} \left({t}\right){dt}=\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{b}_{{n}} \left(\mathrm{1}\right)−{b}_{{n}} \left(\mathrm{0}\right)\:{for}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:\:{prove}\:{that}\:{b}_{{n}} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} {b}_{{n}} \left(\mathrm{1}−{x}\right)\forall{n}\in{N} \\ $$$$\left.\mathrm{3}\right){calculate}\:{b}_{\mathrm{0}} ,\:{b}_{\mathrm{1}} ,{b}_{\mathrm{2}} \:,{b}_{\mathrm{3}} \\ $$

Question Number 30482    Answers: 0   Comments: 0

find S= Σ_(p≥1,q≥1 and D^ (p,q)=1) (1/(p^2 q^2 )) .

$${find}\:\:{S}=\:\sum_{{p}\geqslant\mathrm{1},{q}\geqslant\mathrm{1}\:{and}\:\hat {{D}}\left({p},{q}\right)=\mathrm{1}} \:\:\frac{\mathrm{1}}{{p}^{\mathrm{2}} {q}^{\mathrm{2}} }\:. \\ $$

Question Number 30481    Answers: 0   Comments: 0

find the value of s_1 = Σ_(p≥1,q≥1) (1/(p^2 q^2 )) and s_2 = Σ_(p≥1,q≥1 ,pdivide q) (1/(p^2 q^2 )) .

$${find}\:{the}\:{value}\:{of}\:\:{s}_{\mathrm{1}} =\:\sum_{{p}\geqslant\mathrm{1},{q}\geqslant\mathrm{1}} \:\:\frac{\mathrm{1}}{{p}^{\mathrm{2}} {q}^{\mathrm{2}} }\:\:\:{and} \\ $$$${s}_{\mathrm{2}} =\:\:\sum_{{p}\geqslant\mathrm{1},{q}\geqslant\mathrm{1}\:,{pdivide}\:{q}} \:\:\frac{\mathrm{1}}{{p}^{\mathrm{2}} {q}^{\mathrm{2}} }\:. \\ $$

  Pg 1696      Pg 1697      Pg 1698      Pg 1699      Pg 1700      Pg 1701      Pg 1702      Pg 1703      Pg 1704      Pg 1705   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com