Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1700

Question Number 35619    Answers: 0   Comments: 2

let f(x) = x∣x∣ odd 2π periodic developp f at fourier serie .

$${let}\:{f}\left({x}\right)\:=\:{x}\mid{x}\mid\:\:{odd}\:\mathrm{2}\pi\:{periodic} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$

Question Number 35618    Answers: 0   Comments: 1

integrate the e.d. y′ +e^(−2x) y = (2x+1)cosx

$${integrate}\:{the}\:{e}.{d}.\:{y}'\:\:+{e}^{−\mathrm{2}{x}} {y}\:=\:\left(\mathrm{2}{x}+\mathrm{1}\right){cosx} \\ $$

Question Number 35617    Answers: 0   Comments: 0

integrate the e.d . y^(′′) +(x−1)y = e^(−x) sinx with y(0) =1

$${integrate}\:{the}\:{e}.{d}\:.\:\:{y}^{''} \:\:+\left({x}−\mathrm{1}\right){y}\:=\:{e}^{−{x}} \:{sinx} \\ $$$${with}\:{y}\left(\mathrm{0}\right)\:=\mathrm{1} \\ $$

Question Number 35616    Answers: 0   Comments: 0

integrate the d.e y^(′′) −2y^′ +y = x^2 ch(x)

$${integrate}\:{the}\:{d}.{e}\:\:{y}^{''} \:−\mathrm{2}{y}^{'} \:+{y}\:=\:{x}^{\mathrm{2}} {ch}\left({x}\right) \\ $$

Question Number 35615    Answers: 0   Comments: 0

let S_n = Σ_(k=0) ^n (1/(3k+1)) calculate S_n interms of H_n with H_n =Σ_(k=1) ^n (1/k)

$${let}\:\:{S}_{{n}} \:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{1}} \\ $$$${calculate}\:{S}_{{n}} \:\:\:{interms}\:{of}\:{H}_{{n}} \:\:\:{with}\:{H}_{{n}} \:=\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{k}} \\ $$

Question Number 35614    Answers: 0   Comments: 0

calculate Σ_(n=1) ^∞ (−1)^(n−1) (x^(2n+1) /(4n^2 −1))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$

Question Number 35613    Answers: 0   Comments: 0

find I_(a,b) = ∫_(−∞) ^(+∞) (e^x /((1+a e^x )(1+be^x )))dx ..

$${find}\:\:{I}_{{a},{b}} =\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{e}^{{x}} }{\left(\mathrm{1}+{a}\:{e}^{{x}} \right)\left(\mathrm{1}+{be}^{{x}} \right)}{dx}\:.. \\ $$

Question Number 35612    Answers: 0   Comments: 0

calculate I =∫_0 ^∞ (((1+t)^(−(1/4)) −(1+t)^(−(3/4)) )/t)dt

$${calculate}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}+{t}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\:\:−\left(\mathrm{1}+{t}\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} }{{t}}{dt}\: \\ $$

Question Number 35611    Answers: 0   Comments: 0

let h(t) = e^(t−e^t ) and for n≥0 we put h_n (t) =nh(nt) calculate ∫_(−∞) ^(+∞) h_n (t)dt .

$${let}\:{h}\left({t}\right)\:=\:{e}^{{t}−{e}^{{t}} } \:\:\:\:{and}\:{for}\:{n}\geqslant\mathrm{0}\:{we}\:{put} \\ $$$${h}_{{n}} \left({t}\right)\:={nh}\left({nt}\right) \\ $$$${calculate}\:\:\int_{−\infty} ^{+\infty} \:{h}_{{n}} \left({t}\right){dt}\:. \\ $$

Question Number 35610    Answers: 0   Comments: 0

let give x∈]0,2π[ and a ∈R,b∈ R prove that ((π−x)/2) = arctan(((sinx)/(1−cosx))) 2) prove that ∣arctan(a)−arctan(b)∣≤∣a−b∣ 3)letθ ∈]0,(π/2)[ , x ∈[θ,2π−θ] , r∈[0,1[ prove that ∣ϕ(x,r) −((π−x)/2)∣≤ ((1−r)/((1−cosθ)^2 ))

$$\left.{let}\:{give}\:{x}\in\right]\mathrm{0},\mathrm{2}\pi\left[\:\:{and}\:{a}\:\in{R},{b}\in\:{R}\right. \\ $$$${prove}\:{that}\:\:\frac{\pi−{x}}{\mathrm{2}}\:=\:{arctan}\left(\frac{{sinx}}{\mathrm{1}−{cosx}}\right) \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\mid{arctan}\left({a}\right)−{arctan}\left({b}\right)\mid\leqslant\mid{a}−{b}\mid \\ $$$$\left.\mathrm{3}\left.\right){let}\theta\:\in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\:\:,\:{x}\:\in\left[\theta,\mathrm{2}\pi−\theta\right]\:,\:{r}\in\left[\mathrm{0},\mathrm{1}\left[\:{prove}\:{that}\right.\right.\right. \\ $$$$\mid\varphi\left({x},{r}\right)\:−\frac{\pi−{x}}{\mathrm{2}}\mid\leqslant\:\:\frac{\mathrm{1}−{r}}{\left(\mathrm{1}−{cos}\theta\right)^{\mathrm{2}} } \\ $$

Question Number 35609    Answers: 0   Comments: 0

let r ∈[0,1[ and x∈ R and ϕ(x,r) = arctan( ((rsinx)/(1−r cosx))) 1) prove that (∂ϕ/∂x)(x,r) =Σ_(n=1) ^∞ r^n cos(nx) 2)prove that ϕ(x,r) = Σ_(n=1) ^∞ r^n ((sin(nx))/n)

$${let}\:{r}\:\in\left[\mathrm{0},\mathrm{1}\left[\:{and}\:{x}\in\:{R}\:\:{and}\:\right.\right. \\ $$$$\varphi\left({x},{r}\right)\:=\:{arctan}\left(\:\frac{{rsinx}}{\mathrm{1}−{r}\:{cosx}}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\frac{\partial\varphi}{\partial{x}}\left({x},{r}\right)\:\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{r}^{{n}} \:{cos}\left({nx}\right) \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\varphi\left({x},{r}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{r}^{{n}} \:\:\frac{{sin}\left({nx}\right)}{{n}} \\ $$$$ \\ $$

Question Number 35608    Answers: 0   Comments: 0

let r∈[0,1[ and x from R F(x,r) = (1/(2π)) ∫_0 ^(2π) (((1−r^2 )f(t))/(1−2r cos(t−x) +r^2 ))dt with f ∈ C^0 (R) 2π periodic and ∣∣f∣∣=sup_(t∈R) ∣f(t)∣ prove that F(x,r)= (a_0 /2) + Σ_(n=1) ^∞ r^n (a_n cos(nx) +b_n sin(nx)) with a_n = (1/π) ∫_0 ^(2π) f(t) cos(nt)dt and b_n = (1/π) ∫_0 ^(2π) f(t)sin(nt)dt

$${let}\:{r}\in\left[\mathrm{0},\mathrm{1}\left[\:{and}\:{x}\:{from}\:{R}\right.\right. \\ $$$${F}\left({x},{r}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{\left(\mathrm{1}−{r}^{\mathrm{2}} \right){f}\left({t}\right)}{\mathrm{1}−\mathrm{2}{r}\:{cos}\left({t}−{x}\right)\:+{r}^{\mathrm{2}} }{dt}\:\:{with} \\ $$$${f}\:\:\in\:{C}^{\mathrm{0}} \left({R}\right)\:\:\mathrm{2}\pi\:{periodic}\:\:{and}\:\:\mid\mid{f}\mid\mid={sup}_{{t}\in{R}} \mid{f}\left({t}\right)\mid \\ $$$$\:{prove}\:{that}\:{F}\left({x},{r}\right)=\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\:\sum_{{n}=\mathrm{1}} ^{\infty} {r}^{{n}} \left({a}_{{n}} {cos}\left({nx}\right)\:+{b}_{{n}} {sin}\left({nx}\right)\right) \\ $$$${with}\:{a}_{{n}} =\:\frac{\mathrm{1}}{\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{f}\left({t}\right)\:{cos}\left({nt}\right){dt}\:{and} \\ $$$${b}_{{n}} =\:\frac{\mathrm{1}}{\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:{f}\left({t}\right){sin}\left({nt}\right){dt} \\ $$

Question Number 35606    Answers: 0   Comments: 2

Question Number 35605    Answers: 0   Comments: 0

let r∈[0,1[ and θ ∈ R,x∈ R prove that 1) 1+ 2 Σ_(n=1) ^(+∞) r^n cosθ = ((1−r^2 )/(1−2r cosθ +r^2 )) 2)1 =(1/(2π)) ∫_0 ^(2π) (((1−r^2 ))/(1−2rcos(t−x) +r^2 ))dt

$${let}\:{r}\in\left[\mathrm{0},\mathrm{1}\left[\:{and}\:\theta\:\in\:{R},{x}\in\:{R}\:{prove}\:{that}\right.\right. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{1}+\:\mathrm{2}\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:{r}^{{n}} {cos}\theta\:=\:\frac{\mathrm{1}−{r}^{\mathrm{2}} }{\mathrm{1}−\mathrm{2}{r}\:{cos}\theta\:+{r}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\mathrm{1}\:=\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\:\frac{\left(\mathrm{1}−{r}^{\mathrm{2}} \right)}{\mathrm{1}−\mathrm{2}{rcos}\left({t}−{x}\right)\:+{r}^{\mathrm{2}} }{dt} \\ $$

Question Number 35603    Answers: 0   Comments: 0

let x ∈ R and {x}=x −[x] prove that ∫_1 ^(+∞) (({x})/x^2 ) dx is convergent and find its value .

$${let}\:{x}\:\in\:{R}\:\:{and}\:\left\{{x}\right\}={x}\:−\left[{x}\right] \\ $$$${prove}\:{that}\:\:\int_{\mathrm{1}} ^{+\infty} \:\frac{\left\{{x}\right\}}{{x}^{\mathrm{2}} }\:{dx}\:{is}\:{convergent}\:{and}\:{find} \\ $$$${its}\:{value}\:. \\ $$

Question Number 35602    Answers: 2   Comments: 0

Q_1 .p(x) = 3x^3 + 4x^2 +5x − k and (x−1) is a factor of p(x) find the value of k and the remaining two factors. Q_2 . Evaluate Σ_(r=1) ^∞ 3^(2−r) .

$$\mathrm{Q}_{\mathrm{1}} .{p}\left(\mathrm{x}\right)\:=\:\mathrm{3x}^{\mathrm{3}} +\:\mathrm{4x}^{\mathrm{2}} +\mathrm{5x}\:−\:\mathrm{k}\:\mathrm{and}\: \\ $$$$\left(\mathrm{x}−\mathrm{1}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of}\:\mathrm{p}\left(\mathrm{x}\right)\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{and}\:\mathrm{the}\:\mathrm{remaining}\: \\ $$$$\mathrm{two}\:\mathrm{factors}. \\ $$$${Q}_{\mathrm{2}} .\:{Evaluate}\:\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{3}^{\mathrm{2}−{r}} . \\ $$

Question Number 35595    Answers: 1   Comments: 0

Find the surface Area of a solid cone of raduis 3cm and slant height 4cm. (take π=3.1)

$${Find}\:{the}\:{surface}\:{Area}\:{of}\:{a}\:{solid} \\ $$$${cone}\:{of}\:{raduis}\:\mathrm{3}{cm}\:{and}\:{slant}\: \\ $$$${height}\:\mathrm{4}{cm}.\:\left({take}\:\pi=\mathrm{3}.\mathrm{1}\right) \\ $$

Question Number 35594    Answers: 1   Comments: 0

Given that 18,24,and k + 14 are three consecutive terms of an arithmetic progression Find a) the common difference b) the value of k c)the first term if the 4^(th) term is 12. d) the sum of the first twelve terms of the progression.

$${Given}\:{that}\:\mathrm{18},\mathrm{24},{and}\:{k}\:+\:\mathrm{14}\:{are}\: \\ $$$${three}\:{consecutive}\:{terms}\:{of}\:{an}\: \\ $$$${arithmetic}\:{progression}\:{Find} \\ $$$$\left.{a}\right)\:{the}\:{common}\:{difference} \\ $$$$\left.{b}\right)\:{the}\:{value}\:{of}\:{k} \\ $$$$\left.{c}\right){the}\:{first}\:{term}\:{if}\:{the}\:\mathrm{4}^{{th}} \:{term}\:{is} \\ $$$$\mathrm{12}. \\ $$$$\left.{d}\right)\:{the}\:{sum}\:{of}\:{the}\:{first}\:{twelve}\:{terms}\:{of} \\ $$$${the}\:{progression}. \\ $$

Question Number 35593    Answers: 0   Comments: 0

let f(a)=∫_0 ^∞ e^(−( t^2 +(a/t^2 ))) dt witha>0 find the value of f(a).

$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\:{t}^{\mathrm{2}} \:+\frac{{a}}{{t}^{\mathrm{2}} }\right)} {dt}\:{witha}>\mathrm{0} \\ $$$${find}\:{the}\:{value}\:{of}\:{f}\left({a}\right). \\ $$

Question Number 35590    Answers: 0   Comments: 0

find J = ∫_0 ^1 e^(−ax) ln(1+e^(−bx) )dx with a>0 and b>0 .

$${find}\:\:{J}\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{−{ax}} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right){dx}\:{with}\:{a}>\mathrm{0}\:{and} \\ $$$${b}>\mathrm{0}\:. \\ $$

Question Number 35589    Answers: 0   Comments: 1

let I = ∫_0 ^∞ e^(−tx) ∣sint∣dt with x>0 find the value of I .

$${let}\:\:\:{I}\:\:=\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{tx}} \:\mid{sint}\mid{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$${find}\:{the}\:{value}\:{of}\:{I}\:. \\ $$

Question Number 35588    Answers: 1   Comments: 1

calculate ∫_0 ^(π/3) ((sinx cos(cosx))/(1+2sin(cosx)))dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\frac{{sinx}\:{cos}\left({cosx}\right)}{\mathrm{1}+\mathrm{2}{sin}\left({cosx}\right)}{dx} \\ $$

Question Number 35587    Answers: 0   Comments: 0

let f(t) =∫_0 ^1 (e^(−t(1+x^2 )) /(1+x^2 ))dx with t≥0 find a simple form of f(t) .

$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{e}^{−{t}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right)\:. \\ $$

Question Number 35586    Answers: 0   Comments: 0

find the value of f(α) = ∫_0 ^∞ ((arctan(αx))/(1+x^2 ))dx with α from R .

$${find}\:{the}\:{value}\:{of}\: \\ $$$${f}\left(\alpha\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{arctan}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:{with}\:\alpha\:{from}\:{R}\:. \\ $$

Question Number 35585    Answers: 0   Comments: 0

let f(x)= ∫_0 ^x sin(cost)dt developp f at integr serie

$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:{sin}\left({cost}\right){dt} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$

Question Number 35584    Answers: 0   Comments: 0

let f(t) = ∫_0 ^∞ ((arctan(e^(−tx^2 ) ))/x^2 ) dx with t>0 1) study the existence of f(t) 2) calculate f^′ (t)

$${let}\:\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{arctan}\left({e}^{−{tx}^{\mathrm{2}} } \right)}{{x}^{\mathrm{2}} }\:{dx}\:{with}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{study}\:\:{the}\:{existence}\:{of}\:\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({t}\right) \\ $$

  Pg 1695      Pg 1696      Pg 1697      Pg 1698      Pg 1699      Pg 1700      Pg 1701      Pg 1702      Pg 1703      Pg 1704   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com