Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1700

Question Number 36910    Answers: 0   Comments: 0

1) decompose inside R(x) the fraction F(x)= (1/((1−x^2 )(1−x^3 ))) 2) find ∫ F(x)dx .

$$\left.\mathrm{1}\right)\:{decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int\:{F}\left({x}\right){dx}\:. \\ $$

Question Number 36909    Answers: 0   Comments: 0

let p(x)=x^3 −2x^2 −1 and α is root of p(x) prove that α∉ Q .

$${let}\:{p}\left({x}\right)={x}^{\mathrm{3}} \:−\mathrm{2}{x}^{\mathrm{2}} \:−\mathrm{1}\:{and}\:\alpha\:{is}\:{root}\:{of}\:{p}\left({x}\right) \\ $$$${prove}\:{that}\:\alpha\notin\:{Q}\:. \\ $$

Question Number 36908    Answers: 0   Comments: 0

calculate S_n = Σ_(p=1) ^n (p/(1+p +p^2 )) 2) find lim_(n→+) S_n .

$${calculate}\:{S}_{{n}} =\:\sum_{{p}=\mathrm{1}} ^{{n}} \:\:\frac{{p}}{\mathrm{1}+{p}\:+{p}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+} \:{S}_{{n}} \:\:. \\ $$

Question Number 36907    Answers: 0   Comments: 0

let f(x)= (1/(cosx)) find f^((n)) (x)

$${let}\:\:{f}\left({x}\right)=\:\:\frac{\mathrm{1}}{{cosx}}\:\:{find}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$

Question Number 36969    Answers: 1   Comments: 0

[lim_(n→∞) (2.2^3 .2^5 .....2^(n−1) .3^2 .3^4 .....3^n )^(1/(n^2 +1)) ]^4 =?

$$\left[\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{2}.\mathrm{2}^{\mathrm{3}} .\mathrm{2}^{\mathrm{5}} .....\mathrm{2}^{\mathrm{n}−\mathrm{1}} .\mathrm{3}^{\mathrm{2}} .\mathrm{3}^{\mathrm{4}} .....\mathrm{3}^{\mathrm{n}} \right)^{\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}} \right]^{\mathrm{4}} =? \\ $$

Question Number 36905    Answers: 0   Comments: 0

p is apolynom with n roots differents let Q = p^2 +p^′ let α the number of roots of Q prove that n−1≤α≤n+1 .

$${p}\:{is}\:{apolynom}\:{with}\:{n}\:{roots}\:{differents} \\ $$$${let}\:{Q}\:=\:{p}^{\mathrm{2}} \:+{p}^{'} \:\:\:\:{let}\:\alpha\:{the}\:{number}\:{of}\:{roots}\:{of} \\ $$$${Q}\:{prove}\:{that}\:\:\:{n}−\mathrm{1}\leqslant\alpha\leqslant{n}+\mathrm{1}\:. \\ $$

Question Number 36904    Answers: 0   Comments: 1

1)decompose inside C[x] p(x)=x^(2n) −2(cosα)x^n +1 2) decopose p(x)inside R[x]

$$\left.\mathrm{1}\right){decompose}\:{inside}\:{C}\left[{x}\right] \\ $$$${p}\left({x}\right)={x}^{\mathrm{2}{n}} \:−\mathrm{2}\left({cos}\alpha\right){x}^{{n}} \:+\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{decopose}\:{p}\left({x}\right){inside}\:{R}\left[{x}\right] \\ $$

Question Number 36903    Answers: 0   Comments: 0

prove that 2^(n+1) divide [(1+(√3))^(2n+1) ] [x] mean integr part of x

$${prove}\:{that}\:\:\mathrm{2}^{{n}+\mathrm{1}} \:{divide}\:\left[\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}+\mathrm{1}} \right]\: \\ $$$$\left[{x}\right]\:{mean}\:{integr}\:{part}\:{of}\:{x} \\ $$

Question Number 36892    Answers: 1   Comments: 1

2. ∫[(√((1−x^2 )/(1+x^2 )))]dx=?

$$\mathrm{2}.\:\int\left[\sqrt{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)/\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\right]{dx}=? \\ $$

Question Number 36886    Answers: 0   Comments: 1

Question Number 36884    Answers: 0   Comments: 0

1. What will be the equation of the cueved line which is made by a fixed point in the boundary of a moving circular object in respect to an another fiexd point on the way of moving?

$$\mathrm{1}.\:\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{cueved}\:\mathrm{line}\:\mathrm{which}\:\mathrm{is}\:\mathrm{made}\:\mathrm{by}\:\mathrm{a} \\ $$$$\mathrm{fixed}\:\mathrm{point}\:\mathrm{in}\:\mathrm{the}\:\mathrm{boundary}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{moving}\:\mathrm{circular}\:\mathrm{object}\:\mathrm{in}\:\mathrm{respect}\:\mathrm{to} \\ $$$$\mathrm{an}\:\mathrm{another}\:\mathrm{fiexd}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{way}\:\mathrm{of} \\ $$$$\mathrm{moving}? \\ $$

Question Number 36880    Answers: 1   Comments: 3

Question Number 36877    Answers: 0   Comments: 0

Question Number 36876    Answers: 0   Comments: 0

Question Number 36874    Answers: 0   Comments: 0

Question Number 36873    Answers: 0   Comments: 0

Question Number 36872    Answers: 0   Comments: 0

Question Number 36871    Answers: 0   Comments: 0

Question Number 36867    Answers: 0   Comments: 0

Question Number 36865    Answers: 0   Comments: 0

Question Number 36862    Answers: 0   Comments: 1

Question Number 36861    Answers: 0   Comments: 0

Question Number 36853    Answers: 0   Comments: 2

Find the laplace of L{((e^(−at) − e^(−bt) )/t)}

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{laplace}\:\mathrm{of}\:\:\:\:\:\mathrm{L}\left\{\frac{\mathrm{e}^{−\mathrm{at}} \:−\:\mathrm{e}^{−\mathrm{bt}} }{\mathrm{t}}\right\} \\ $$

Question Number 36852    Answers: 0   Comments: 0

Question Number 36851    Answers: 1   Comments: 0

Question Number 36855    Answers: 1   Comments: 1

  Pg 1695      Pg 1696      Pg 1697      Pg 1698      Pg 1699      Pg 1700      Pg 1701      Pg 1702      Pg 1703      Pg 1704   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com