Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1700
Question Number 30544 Answers: 0 Comments: 0
$${find}\:{I}=\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{t}}{\mathrm{2}+{sint}}{dt}. \\ $$
Question Number 30543 Answers: 1 Comments: 1
Question Number 30542 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{{x}} \:\:{e}^{−{u}^{\mathrm{2}} } {du}=\:{x}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{e}^{−{x}^{\mathrm{2}} {tan}^{\mathrm{2}} {t}} }{{cos}^{\mathrm{2}} {t}}{dt}\:\:. \\ $$$$ \\ $$
Question Number 30541 Answers: 0 Comments: 0
$$\mathrm{4}{n}\mathrm{568} \\ $$
Question Number 30540 Answers: 0 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\:\begin{vmatrix}{\mathrm{bc}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{ca}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{ab}}\\{\:\mathrm{a}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{c}}\\{\:\mathrm{a}^{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} \:\mathrm{b}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{c}^{\mathrm{2}} }\end{vmatrix}\:\:=\:\:\left(\mathrm{b}\:−\:\mathrm{a}\right)\left(\mathrm{c}\:−\:\mathrm{a}\right)\left(\mathrm{c}\:−\:\mathrm{b}\right)\left(\mathrm{ab}\:+\:\mathrm{bc}\:+\:\mathrm{ac}\right) \\ $$
Question Number 30538 Answers: 1 Comments: 0
$${A}\:{man}\:{rows}\:{a}\:{boat}\:{downstream} \\ $$$${for}\:\mathrm{3}\:{hours}\:{and}\:{then}\:{upstream} \\ $$$${for}\:\mathrm{3}\:{hours}.\:{If}\:{he}\:{covered}\:{a} \\ $$$${total}\:{distance}\:{of}\:\mathrm{12}{km},\:{find} \\ $$$${the}\:{speed}\:{of}\:{the}\:{water}\:{current}. \\ $$$$ \\ $$
Question Number 30626 Answers: 0 Comments: 6
Question Number 30529 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)={e}^{−{x}^{\mathrm{2}} } \:\:{prove}\:{that}\:{f}^{\left({n}\right)} \:{is}\:{at}\:{form} \\ $$$${f}^{\left({n}\right)} =\:{p}_{{n}\:} \:{e}^{−{x}^{\mathrm{2}} } \:\:{find}\:{relation}\:{between}\:{p}_{{n}} {and}\:{p}_{{n}+\mathrm{1}\:} . \\ $$$$\left.\mathrm{2}\right)\:{find}\:{p}_{\mathrm{0}} \:,{p}_{\mathrm{1}} ,\:{p}_{\mathrm{2}} ,{p}_{\mathrm{3}} \\ $$
Question Number 30528 Answers: 1 Comments: 1
$${simplify}\:\:{A}=\:{arctan}\left(\frac{{sinx}}{\mathrm{1}−{cosx}}\right)\:. \\ $$
Question Number 30527 Answers: 1 Comments: 0
$${find}\:\:{I}_{{n},{p}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{x}^{{n}} \:{e}^{−{px}} \:\:\:\:\:{with}\:{n}\:{and}\:{p}\:{from}\:{N}^{\bigstar} \:. \\ $$
Question Number 30526 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+{ax}}\:\:{with}\:{a}\in{C}\:\:\:{find}\:\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\left({x}\right)\:{at}\:{integr}\:{series}. \\ $$
Question Number 30525 Answers: 0 Comments: 0
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{give}\:{I}\:{at}\:{form}\:{of}\:{series}\:. \\ $$
Question Number 30524 Answers: 1 Comments: 2
$${let}\:{w}_{{n}} =\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\:\:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} −\mathrm{1}}\:\:{find}\:{lim}_{{n}\rightarrow\infty} \:{w}_{{n}} \:. \\ $$
Question Number 30523 Answers: 0 Comments: 0
$$\:\left(\alpha_{{k}} \right)_{\mathrm{0}\leqslant{k}\leqslant{n}−\mathrm{1}} {are}\:{roots}\:{of}\:\:{x}^{{n}} −\mathrm{1}\:\:{simplify} \\ $$$$\prod_{{n}} =\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\left({x}+\alpha_{{k}} {y}\right)\:. \\ $$
Question Number 30522 Answers: 1 Comments: 1
$${let}\:{p}\left({x}\right)=\:\left(\mathrm{1}+{ix}\right)^{{n}} \:−\left(\mathrm{1}−{ix}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:{and}\:{factorize}\:{p}\left({x}\right) \\ $$$$\left.\right)\:{give}\:{p}\left({x}\right)\:{at}\:{form}\:{of}\:{arcs}. \\ $$$$ \\ $$
Question Number 30521 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right)\:{find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{{n}} \:{cos}\left({narctanx}\right){dx} \\ $$$$\left.\mathrm{2}\right){find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}\right)^{\mathrm{3}} \:{cos}\left(\mathrm{3}\:{arctanx}\right){dx}\:. \\ $$
Question Number 30519 Answers: 1 Comments: 0
$${let}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\:\:{find}\:{the}\:{value}\:{of}\:\sum_{{k}=\mathrm{0}} ^{{n}} {C}_{{n}} ^{{k}} \left(\mathrm{1}+{j}\right)^{{k}} {j}^{\mathrm{2}{n}−\mathrm{2}{k}} \:. \\ $$
Question Number 30518 Answers: 1 Comments: 0
$${let}\:{a}>\mathrm{0}\:{find}\:\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}+{a}\right)\sqrt{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }}\:. \\ $$
Question Number 30517 Answers: 0 Comments: 1
$${let}\:{g}\left({x}\right)=\:{e}^{{x}} {cosx}\:\:{find}\:\:{g}^{\left({n}\right)} \left({x}\right)\:. \\ $$
Question Number 30515 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{find}\:{a}\:{form}\:{of}\:{f}^{\left({n}\right)} \left({x}\right)\:. \\ $$
Question Number 30514 Answers: 0 Comments: 0
$${find}\:{lim}_{{n}\rightarrow\infty} \:\prod_{{k}=\mathrm{1}} ^{{n}} \:\left(\mathrm{1}−\:\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{3}} }\right).\: \\ $$
Question Number 30513 Answers: 0 Comments: 1
Question Number 30512 Answers: 0 Comments: 1
$${find}\:\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\sqrt{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}}\:{dt}\:. \\ $$
Question Number 30511 Answers: 0 Comments: 1
$${find}\:\:{lim}_{{x}\rightarrow+\infty} \:\:{e}^{{x}} \:\left[\frac{\mathrm{1}}{{x}}\right]. \\ $$
Question Number 30510 Answers: 0 Comments: 0
$${find}\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+\:} } \:\:\:\:\sqrt{{x}}\:\left[\:\frac{\mathrm{1}}{{x}}\right]\:\:{and}\:{lim}_{{x}\rightarrow+\infty} \:\:\frac{\left[{x}\right]}{{x}}\:. \\ $$
Question Number 30508 Answers: 0 Comments: 1
$${find}\:{I}=\:\int\:\:{e}^{{arcsinx}} {dx}\:. \\ $$
Pg 1695 Pg 1696 Pg 1697 Pg 1698 Pg 1699 Pg 1700 Pg 1701 Pg 1702 Pg 1703 Pg 1704
Terms of Service
Privacy Policy
Contact: info@tinkutara.com