Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 170

Question Number 206300    Answers: 0   Comments: 4

Find the area of shaded region.

$${Find}\:{the}\:{area}\:{of}\:{shaded}\:{region}. \\ $$

Question Number 206294    Answers: 2   Comments: 2

Solve the system (a+b)^(−1) +c^(−1) =2^(−1) (c+b)^(−1) +a^(−1) =3^(−1) (a+c)^(−1) +b^(−1) =4^(−1)

$${Solve}\:{the}\:{system} \\ $$$$\left({a}+{b}\right)^{−\mathrm{1}} +{c}^{−\mathrm{1}} =\mathrm{2}^{−\mathrm{1}} \\ $$$$\left({c}+{b}\right)^{−\mathrm{1}} +{a}^{−\mathrm{1}} =\mathrm{3}^{−\mathrm{1}} \\ $$$$\left({a}+{c}\right)^{−\mathrm{1}} +{b}^{−\mathrm{1}} =\mathrm{4}^{−\mathrm{1}} \\ $$

Question Number 206292    Answers: 2   Comments: 0

Question Number 206275    Answers: 3   Comments: 0

Question Number 206273    Answers: 1   Comments: 0

Does anyone know how this works ? I have dψ = (x^2 -cy^2 )dy And my physics teacher says it is (or can be) a harmonic function (Δψ = 0) Can anyone explain ?

$$\mathrm{Does}\:\mathrm{anyone}\:\mathrm{know}\:\mathrm{how}\:\mathrm{this}\:\mathrm{works}\:? \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{have}\:{d}\psi\:=\:\left({x}^{\mathrm{2}} -{cy}^{\mathrm{2}} \right){dy} \\ $$$$ \\ $$$$\mathrm{And}\:\mathrm{my}\:\mathrm{physics}\:\mathrm{teacher}\:\mathrm{says}\:\mathrm{it}\:\mathrm{is}\:\left(\mathrm{or}\:\mathrm{can}\right. \\ $$$$\left.\mathrm{be}\right)\:\mathrm{a}\:\mathrm{harmonic}\:\mathrm{function}\:\left(\Delta\psi\:=\:\mathrm{0}\right) \\ $$$$\mathrm{Can}\:\mathrm{anyone}\:\mathrm{explain}\:? \\ $$

Question Number 206269    Answers: 3   Comments: 2

Question Number 206267    Answers: 0   Comments: 1

Question Number 206253    Answers: 2   Comments: 0

f(x)= log_( 2) ( x + 2(√x) +4 ) ⇒ f^( −1) ( 13 −4(√3) ) = ? −−−−−

$$\:\:\: \\ $$$$\:\:\:\:\:\:\:{f}\left({x}\right)=\:{log}_{\:\mathrm{2}} \:\left(\:{x}\:+\:\mathrm{2}\sqrt{{x}}\:+\mathrm{4}\:\right) \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\:{f}^{\:−\mathrm{1}} \left(\:\mathrm{13}\:−\mathrm{4}\sqrt{\mathrm{3}}\:\right)\:=\:? \\ $$$$\:\:\:\:\:\:\:−−−−− \\ $$$$\:\:\:\: \\ $$

Question Number 206251    Answers: 1   Comments: 0

3x^2 −12x−5(√(x^2 −4x−1))−5=0 Solve for value of x AS SIMPLE AS POSSIBLE.

$$\mathrm{3}{x}^{\mathrm{2}} −\mathrm{12}{x}−\mathrm{5}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{1}}−\mathrm{5}=\mathrm{0} \\ $$$${Solve}\:{for}\:{value}\:{of}\:{x}\:{AS}\:{SIMPLE}\:{AS}\:{POSSIBLE}. \\ $$

Question Number 206248    Answers: 1   Comments: 0

∫(1/( (√((1−t)(2−t)))))dt=...?

$$\int\frac{\mathrm{1}}{\:\sqrt{\left(\mathrm{1}−{t}\right)\left(\mathrm{2}−{t}\right)}}{dt}=...? \\ $$

Question Number 206244    Answers: 1   Comments: 0

_1 : _2 = .... (A) 1 : (2)^(1/3) (B) (2)^(1/3) : 1 (C) 1 : (√2) (D) (√2) : 1 (E) 1 : (√3)

$$\:\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ _{\mathrm{1}} \::\: _{\mathrm{2}} \:=\:.... \\ $$$$\:\:\left({A}\right)\:\mathrm{1}\::\:\sqrt[{\mathrm{3}}]{\mathrm{2}}\:\:\:\:\left({B}\right)\:\sqrt[{\mathrm{3}}]{\mathrm{2}}\::\:\mathrm{1}\:\:\:\:\:\left({C}\right)\:\mathrm{1}\::\:\sqrt{\mathrm{2}} \\ $$$$\:\:\left({D}\right)\:\sqrt{\mathrm{2}}\::\:\mathrm{1}\:\:\:\:\left({E}\right)\:\mathrm{1}\::\:\sqrt{\mathrm{3}} \\ $$

Question Number 206232    Answers: 4   Comments: 0

Question Number 206230    Answers: 1   Comments: 0

Expand x^2 + 2x + 3 respect to x = −2. (a) (x − 2)^2 −2(x + 2) + 3 (b) (x + 2)^2 −2(x + 2) + 3 (c) (x + 2)^2 + 2(x + 2) + 3 (d) (x − 2)^2 −2(x − 2) − 3 is it taylors theorem?

$$\mathrm{Expand}\:\:\:\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\:\mathrm{3}\:\:\:{respect}\:{to}\:{x}\:=\:−\mathrm{2}. \\ $$$$\left(\mathrm{a}\right)\:\left({x}\:−\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{b}\right)\:\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{c}\right)\:\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} +\:\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{d}\right)\:\left({x}\:−\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:−\:\mathrm{2}\right)\:−\:\mathrm{3} \\ $$$$ \\ $$$$\mathrm{is}\:\mathrm{it}\:\mathrm{taylors}\:\mathrm{theorem}? \\ $$

Question Number 206227    Answers: 1   Comments: 0

OA=(4^x ) OB=_7 ^5 and AB=5 units

$${OA}=\left(\overset{{x}} {\mathrm{4}}\right)\:{OB}=_{\mathrm{7}} ^{\mathrm{5}} \:{and}\:{AB}=\mathrm{5}\:{units} \\ $$

Question Number 206224    Answers: 3   Comments: 0

find ∫_0 ^1 arctan(x^5 )dx

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{\mathrm{5}} \right){dx} \\ $$

Question Number 206212    Answers: 2   Comments: 4

Question Number 206216    Answers: 3   Comments: 0

Question Number 206198    Answers: 2   Comments: 0

Question Number 206200    Answers: 1   Comments: 0

∫((xsinx)/(1−cosx))dx

$$\int\frac{{xsinx}}{\mathrm{1}−{cosx}}{dx} \\ $$

Question Number 206178    Answers: 0   Comments: 3

Question Number 206177    Answers: 1   Comments: 0

Find total number of solutions of the equation sinx = logx.

$$\mathrm{Find}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\mathrm{sin}{x}\:=\:\mathrm{log}{x}. \\ $$

Question Number 206171    Answers: 0   Comments: 0

Question Number 206168    Answers: 0   Comments: 1

Question Number 206160    Answers: 2   Comments: 1

If x and y are real numbers then is it possible that secθ = ((2xy)/(x^2 + y^2 )) ?

$$\mathrm{If}\:{x}\:\mathrm{and}\:{y}\:\mathrm{are}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{then}\:\mathrm{is}\:\mathrm{it} \\ $$$$\mathrm{possible}\:\mathrm{that}\:\mathrm{sec}\theta\:=\:\frac{\mathrm{2}{xy}}{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} }\:? \\ $$

Question Number 206157    Answers: 2   Comments: 3

Question Number 206156    Answers: 1   Comments: 4

  Pg 165      Pg 166      Pg 167      Pg 168      Pg 169      Pg 170      Pg 171      Pg 172      Pg 173      Pg 174   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com