Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 170

Question Number 205164    Answers: 1   Comments: 0

Find the determinant: determinant (((1−x),2,3,…,n),(1,(2−x),3,…,n),(1,2,(3−x),…,n),(⋮,⋮,⋮,⋱,⋮),(1,2,3,…,(n−x)))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{determinant}: \\ $$$$\begin{vmatrix}{\mathrm{1}−{x}}&{\mathrm{2}}&{\mathrm{3}}&{\ldots}&{{n}}\\{\mathrm{1}}&{\mathrm{2}−{x}}&{\mathrm{3}}&{\ldots}&{{n}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}−{x}}&{\ldots}&{{n}}\\{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\ldots}&{{n}−{x}}\end{vmatrix} \\ $$

Question Number 205163    Answers: 1   Comments: 0

∫_0 ^1 ((sin(lnx))/(lnx))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sin}\left({lnx}\right)}{{lnx}}{dx} \\ $$

Question Number 205160    Answers: 2   Comments: 0

Question Number 205161    Answers: 1   Comments: 1

Calculate the area of the green shaded portions

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{green}\:\mathrm{shaded}\:\mathrm{portions} \\ $$

Question Number 205156    Answers: 1   Comments: 0

Find the determinant: determinant ((5,3,0,0,…,0,0),(2,5,3,0,…,0,0),(0,2,5,3,…,0,0),(⋮,⋮,⋮,⋮,⋱,⋮,⋮),(0,0,0,0,…,5,3),(0,0,0,0,…,2,5))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{determinant}: \\ $$$$\begin{vmatrix}{\mathrm{5}}&{\mathrm{3}}&{\mathrm{0}}&{\mathrm{0}}&{\ldots}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{2}}&{\mathrm{5}}&{\mathrm{3}}&{\mathrm{0}}&{\ldots}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{5}}&{\mathrm{3}}&{\ldots}&{\mathrm{0}}&{\mathrm{0}}\\{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}&{\vdots}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\ldots}&{\mathrm{5}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\ldots}&{\mathrm{2}}&{\mathrm{5}}\end{vmatrix} \\ $$

Question Number 205153    Answers: 0   Comments: 0

Question Number 205151    Answers: 1   Comments: 0

find ∫_0 ^∞ ((ln^2 x)/(1+x^4 ))dx

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 205147    Answers: 2   Comments: 0

solve for z∈C zln z =z−2

$$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$${z}\mathrm{ln}\:{z}\:={z}−\mathrm{2} \\ $$

Question Number 205142    Answers: 1   Comments: 0

lim_(n→∞) n^(−n^2 ) [(n+1)(n+(1/2))(n+(1/2^2 ))...(n+(1/2^(n−1) ))]^n =?

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{n}^{−\mathrm{n}^{\mathrm{2}} } \left[\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\right)...\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}−\mathrm{1}} }\right)\right]^{\mathrm{n}} =? \\ $$

Question Number 205141    Answers: 0   Comments: 0

Server is back up and running. Post a message if you face any issues.

$$\mathrm{Server}\:\mathrm{is}\:\mathrm{back}\:\mathrm{up}\:\mathrm{and}\:\mathrm{running}. \\ $$$$\mathrm{Post}\:\mathrm{a}\:\mathrm{message}\:\mathrm{if}\:\mathrm{you}\:\mathrm{face}\:\mathrm{any}\:\mathrm{issues}. \\ $$

Question Number 205138    Answers: 0   Comments: 0

A=lim_(x→0 ) ((1−cos2x)/(2x^2 )) =lim_(x→0) ((2sin^2 x)/(2x^2 )) =lim_(x→0) (((sinx)/x))^2 =1 B=lim_(x→0) (1/(xcotx)) =lim_(x→0) ((tanx)/x)=lim_(x→0) ((sinx)/x)×(1/(cosx))=1

$${A}=\underset{{x}\rightarrow\mathrm{0}\:\:} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos2}{x}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2sin}^{\mathrm{2}} {x}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}{x}}{{x}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${B}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}\mathrm{cot}{x}} \\ $$$$\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}{x}}{{x}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}{x}}{{x}}×\frac{\mathrm{1}}{\mathrm{cos}{x}}=\mathrm{1} \\ $$

Question Number 205135    Answers: 1   Comments: 1

Question Number 205134    Answers: 1   Comments: 0

Question Number 205130    Answers: 1   Comments: 1

Question Number 205117    Answers: 1   Comments: 0

Question Number 205116    Answers: 2   Comments: 0

let x^2 −3x+p = 0 has two positive roots ′a′ and ′b′ then inf((4/a)+(1/b)) is

$$\:\:\mathrm{let}\:\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{p}\:=\:\mathrm{0}\:\mathrm{has}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{roots} \\ $$$$\:'\mathrm{a}'\:\mathrm{and}\:'\mathrm{b}'\:\mathrm{then}\:\:\mathrm{inf}\left(\frac{\mathrm{4}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}\right)\:\mathrm{is}\: \\ $$

Question Number 205114    Answers: 1   Comments: 0

Solve: lim_((x,y)→(0,0)) ((1−cos((√(10xy))))/(3.y.sin(22x))) Ans.: (5/(66)) Step by step, please!

$${Solve}: \\ $$$$ \\ $$$$\:\:{lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \frac{\mathrm{1}−{cos}\left(\sqrt{\mathrm{10}{xy}}\right)}{\mathrm{3}.{y}.{sin}\left(\mathrm{22}{x}\right)} \\ $$$$ \\ $$$${Ans}.:\:\frac{\mathrm{5}}{\mathrm{66}} \\ $$$${Step}\:{by}\:{step},\:{please}! \\ $$

Question Number 205107    Answers: 0   Comments: 2

y = log_2 (sin(x)+cos(x)) ⇒ R_y = ?(Range )

$$ \\ $$$$\:\:\:\:{y}\:=\:{log}_{\mathrm{2}} \left({sin}\left({x}\right)+{cos}\left({x}\right)\right) \\ $$$$\:\:\:\Rightarrow\:\:{R}_{{y}} \:=\:?\left({Range}\:\right) \\ $$$$ \\ $$

Question Number 205106    Answers: 1   Comments: 1

Question Number 205101    Answers: 1   Comments: 0

given that there are real constant a,b, c, d such the identity λx^2 +2xy+y^2 = (ax+by)^2 +(cx+dy)^2 holds for all x,y ∈ R this implies (a) λ=−5 (b) λ≥1 (c)0<λ<1 (d) there is no such λ∈R

$$\:\:\mathrm{given}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{real}\:\mathrm{constant}\:\mathrm{a},\mathrm{b},\:\mathrm{c},\:\mathrm{d} \\ $$$$\:\:\mathrm{such}\:\mathrm{the}\:\mathrm{identity} \\ $$$$\:\lambda\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} =\:\left(\mathrm{ax}+\mathrm{by}\right)^{\mathrm{2}} +\left(\mathrm{cx}+\mathrm{dy}\right)^{\mathrm{2}} \:\mathrm{holds} \\ $$$$\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\mathrm{y}\:\in\:\mathbb{R}\:\mathrm{this}\:\mathrm{implies} \\ $$$$\left({a}\right)\:\lambda=−\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({b}\right)\:\lambda\geqslant\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left({c}\right)\mathrm{0}<\lambda<\mathrm{1} \\ $$$$\:\left({d}\right)\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{such}\:\lambda\in\mathbb{R} \\ $$

Question Number 205091    Answers: 0   Comments: 0

f:z ⇒ z f:z ⇒ z_n f:z_n ⇒ z_n How many homomorphism can be define

$${f}:{z}\:\Rightarrow\:{z} \\ $$$${f}:{z}\:\Rightarrow\:{z}_{{n}} \\ $$$${f}:{z}_{{n}} \Rightarrow\:{z}_{{n}} \\ $$$${How}\:{many}\:{homomorphism}\:{can}\:{be}\:{define} \\ $$

Question Number 205083    Answers: 1   Comments: 0

Question Number 205073    Answers: 6   Comments: 0

if a, b, c are the roots of f(x)=x^3 −2024x^2 +2024x+2024 find (1/(1−a^2 ))+(1/(1−b^2 ))+(1/(1−c^2 ))=?

$${if}\:{a},\:{b},\:{c}\:{are}\:{the}\:{roots}\:{of} \\ $$$${f}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{2024}{x}^{\mathrm{2}} +\mathrm{2024}{x}+\mathrm{2024} \\ $$$${find}\:\frac{\mathrm{1}}{\mathrm{1}−{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}−{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}−{c}^{\mathrm{2}} }=? \\ $$

Question Number 205070    Answers: 0   Comments: 5

Given { ((A∩B= { a, b})),((A∩C = { b, c} )),((B∩C= { b ,d })) :} then (A∩C) + (A∩B) + (B∩C)

$$\:\:\:\mathrm{Given}\:\begin{cases}{\mathrm{A}\cap\mathrm{B}=\:\left\{\:\mathrm{a},\:\mathrm{b}\right\}}\\{\mathrm{A}\cap\mathrm{C}\:=\:\left\{\:\mathrm{b},\:\mathrm{c}\right\}\:}\\{\mathrm{B}\cap\mathrm{C}=\:\left\{\:\mathrm{b}\:,\mathrm{d}\:\right\}}\end{cases} \\ $$$$\:\:\:\:\mathrm{then}\:\left(\mathrm{A}\cap\mathrm{C}\right)\:+\:\left(\mathrm{A}\cap\mathrm{B}\right)\:+\:\left(\mathrm{B}\cap\mathrm{C}\right) \\ $$

Question Number 205092    Answers: 2   Comments: 0

Question Number 205062    Answers: 3   Comments: 0

  Pg 165      Pg 166      Pg 167      Pg 168      Pg 169      Pg 170      Pg 171      Pg 172      Pg 173      Pg 174   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com