Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 170
Question Number 206300 Answers: 0 Comments: 4
$${Find}\:{the}\:{area}\:{of}\:{shaded}\:{region}. \\ $$
Question Number 206294 Answers: 2 Comments: 2
$${Solve}\:{the}\:{system} \\ $$$$\left({a}+{b}\right)^{−\mathrm{1}} +{c}^{−\mathrm{1}} =\mathrm{2}^{−\mathrm{1}} \\ $$$$\left({c}+{b}\right)^{−\mathrm{1}} +{a}^{−\mathrm{1}} =\mathrm{3}^{−\mathrm{1}} \\ $$$$\left({a}+{c}\right)^{−\mathrm{1}} +{b}^{−\mathrm{1}} =\mathrm{4}^{−\mathrm{1}} \\ $$
Question Number 206292 Answers: 2 Comments: 0
Question Number 206275 Answers: 3 Comments: 0
Question Number 206273 Answers: 1 Comments: 0
$$\mathrm{Does}\:\mathrm{anyone}\:\mathrm{know}\:\mathrm{how}\:\mathrm{this}\:\mathrm{works}\:? \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{have}\:{d}\psi\:=\:\left({x}^{\mathrm{2}} -{cy}^{\mathrm{2}} \right){dy} \\ $$$$ \\ $$$$\mathrm{And}\:\mathrm{my}\:\mathrm{physics}\:\mathrm{teacher}\:\mathrm{says}\:\mathrm{it}\:\mathrm{is}\:\left(\mathrm{or}\:\mathrm{can}\right. \\ $$$$\left.\mathrm{be}\right)\:\mathrm{a}\:\mathrm{harmonic}\:\mathrm{function}\:\left(\Delta\psi\:=\:\mathrm{0}\right) \\ $$$$\mathrm{Can}\:\mathrm{anyone}\:\mathrm{explain}\:? \\ $$
Question Number 206269 Answers: 3 Comments: 2
Question Number 206267 Answers: 0 Comments: 1
Question Number 206253 Answers: 2 Comments: 0
$$\:\:\: \\ $$$$\:\:\:\:\:\:\:{f}\left({x}\right)=\:{log}_{\:\mathrm{2}} \:\left(\:{x}\:+\:\mathrm{2}\sqrt{{x}}\:+\mathrm{4}\:\right) \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\:{f}^{\:−\mathrm{1}} \left(\:\mathrm{13}\:−\mathrm{4}\sqrt{\mathrm{3}}\:\right)\:=\:? \\ $$$$\:\:\:\:\:\:\:−−−−− \\ $$$$\:\:\:\: \\ $$
Question Number 206251 Answers: 1 Comments: 0
$$\mathrm{3}{x}^{\mathrm{2}} −\mathrm{12}{x}−\mathrm{5}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{1}}−\mathrm{5}=\mathrm{0} \\ $$$${Solve}\:{for}\:{value}\:{of}\:{x}\:{AS}\:{SIMPLE}\:{AS}\:{POSSIBLE}. \\ $$
Question Number 206248 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{\:\sqrt{\left(\mathrm{1}−{t}\right)\left(\mathrm{2}−{t}\right)}}{dt}=...? \\ $$
Question Number 206244 Answers: 1 Comments: 0
$$\:\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ _{\mathrm{1}} \::\: _{\mathrm{2}} \:=\:.... \\ $$$$\:\:\left({A}\right)\:\mathrm{1}\::\:\sqrt[{\mathrm{3}}]{\mathrm{2}}\:\:\:\:\left({B}\right)\:\sqrt[{\mathrm{3}}]{\mathrm{2}}\::\:\mathrm{1}\:\:\:\:\:\left({C}\right)\:\mathrm{1}\::\:\sqrt{\mathrm{2}} \\ $$$$\:\:\left({D}\right)\:\sqrt{\mathrm{2}}\::\:\mathrm{1}\:\:\:\:\left({E}\right)\:\mathrm{1}\::\:\sqrt{\mathrm{3}} \\ $$
Question Number 206232 Answers: 4 Comments: 0
Question Number 206230 Answers: 1 Comments: 0
$$\mathrm{Expand}\:\:\:\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\:\mathrm{3}\:\:\:{respect}\:{to}\:{x}\:=\:−\mathrm{2}. \\ $$$$\left(\mathrm{a}\right)\:\left({x}\:−\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{b}\right)\:\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{c}\right)\:\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} +\:\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{d}\right)\:\left({x}\:−\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:−\:\mathrm{2}\right)\:−\:\mathrm{3} \\ $$$$ \\ $$$$\mathrm{is}\:\mathrm{it}\:\mathrm{taylors}\:\mathrm{theorem}? \\ $$
Question Number 206227 Answers: 1 Comments: 0
$${OA}=\left(\overset{{x}} {\mathrm{4}}\right)\:{OB}=_{\mathrm{7}} ^{\mathrm{5}} \:{and}\:{AB}=\mathrm{5}\:{units} \\ $$
Question Number 206224 Answers: 3 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{\mathrm{5}} \right){dx} \\ $$
Question Number 206212 Answers: 2 Comments: 4
Question Number 206216 Answers: 3 Comments: 0
Question Number 206198 Answers: 2 Comments: 0
Question Number 206200 Answers: 1 Comments: 0
$$\int\frac{{xsinx}}{\mathrm{1}−{cosx}}{dx} \\ $$
Question Number 206178 Answers: 0 Comments: 3
Question Number 206177 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\mathrm{sin}{x}\:=\:\mathrm{log}{x}. \\ $$
Question Number 206171 Answers: 0 Comments: 0
Question Number 206168 Answers: 0 Comments: 1
Question Number 206160 Answers: 2 Comments: 1
$$\mathrm{If}\:{x}\:\mathrm{and}\:{y}\:\mathrm{are}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{then}\:\mathrm{is}\:\mathrm{it} \\ $$$$\mathrm{possible}\:\mathrm{that}\:\mathrm{sec}\theta\:=\:\frac{\mathrm{2}{xy}}{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} }\:? \\ $$
Question Number 206157 Answers: 2 Comments: 3
Question Number 206156 Answers: 1 Comments: 4
Pg 165 Pg 166 Pg 167 Pg 168 Pg 169 Pg 170 Pg 171 Pg 172 Pg 173 Pg 174
Terms of Service
Privacy Policy
Contact: info@tinkutara.com