Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 170
Question Number 205053 Answers: 0 Comments: 1
Question Number 205045 Answers: 0 Comments: 4
$$\:\:\: \\ $$$$ \\ $$$$ \\ $$
Question Number 205032 Answers: 3 Comments: 1
Question Number 205024 Answers: 0 Comments: 0
Question Number 205021 Answers: 2 Comments: 0
$${x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\mathrm{6}\:=\:\mathrm{0}\:\&\:{x}^{\mathrm{2}} \:+\:{kx}\:+\:\mathrm{1}\:=\:\mathrm{0}\:{have}\:{a}\: \\ $$$${common}\:{root}\:\mathrm{then}\:\:{k}\:=\:? \\ $$
Question Number 205018 Answers: 1 Comments: 2
$$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\:'\mathrm{k}'\:\mathrm{can}\:\mathrm{be}\:\mathrm{expression}\:{x}^{\mathrm{3}} \:+\:{kx}^{\mathrm{2}} \:−\mathrm{7}{x}\:+\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{be}\:\mathrm{resolved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{factors}? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{3} \\ $$
Question Number 205013 Answers: 2 Comments: 0
$${if}\:{y}=\sqrt[{\mathrm{7}}]{{x}}\:{prove}\:{that} \\ $$$${y}^{'} =\frac{\mathrm{1}}{\mathrm{7}\:\sqrt[{\mathrm{7}}]{{x}^{\mathrm{6}} }} \\ $$
Question Number 205001 Answers: 2 Comments: 0
Question Number 204999 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:{x}\in\mathbb{C} \\ $$$${x}^{\mathrm{3}} +\left(\mathrm{4}−\mathrm{3i}\right){x}^{\mathrm{2}} −\left(\mathrm{51}+\mathrm{49i}\right){x}−\mathrm{442}+\mathrm{170i}=\mathrm{0} \\ $$
Question Number 204994 Answers: 2 Comments: 0
Question Number 204991 Answers: 2 Comments: 1
Question Number 204992 Answers: 1 Comments: 0
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{way}\:\mathrm{to}\:\mathrm{integrate}: \\ $$$$\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{ln}\left({x}\right)}}\:{dx} \\ $$$$\mathrm{without}\:\mathrm{hitting}\:\mathrm{the}\:\mathrm{Gauss}\:\mathrm{error}\:\mathrm{function} \\ $$$$\mathrm{or}\:{e}^{{t}^{\mathrm{2}} } \:\mathrm{and}\:{e}^{−{t}^{\mathrm{2}} } \:? \\ $$
Question Number 204985 Answers: 1 Comments: 0
$${Q}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{\mathrm{3}} \right)\left(\mathrm{1}−{x}^{\mathrm{33}} \right)\left(\mathrm{1}−{x}^{\mathrm{333}} \right)}{{lnx}}{dx} \\ $$
Question Number 204979 Answers: 4 Comments: 0
$${factorizar} \\ $$$${x}^{\mathrm{4}} \:+\:\mathrm{1} \\ $$
Question Number 204978 Answers: 1 Comments: 0
Question Number 204970 Answers: 1 Comments: 1
Question Number 204961 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cot}\:\mathrm{3}{x}}\:{dx}\:=\:\: \\ $$
Question Number 204957 Answers: 2 Comments: 0
$$\mathrm{2}×\mathrm{2}\:\mathrm{matrix}\:\boldsymbol{\mathrm{A}}\:\mathrm{and}\:\boldsymbol{\mathrm{B}}\:\mathrm{satisfy}\:\mathrm{that} \\ $$$$\boldsymbol{\mathrm{AB}}+\boldsymbol{\mathrm{A}}=\boldsymbol{\mathrm{BA}}+\boldsymbol{\mathrm{B}}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\left(\boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{B}}\right)^{\mathrm{2}} =\boldsymbol{\mathrm{O}}. \\ $$
Question Number 204948 Answers: 0 Comments: 4
$${prove}\: \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\sqrt[{\mathrm{3}}]{{abc}}\geqslant\mathrm{4} \\ $$$${if} \\ $$$${ab}+{bc}+{ac}=\mathrm{3} \\ $$
Question Number 204947 Answers: 1 Comments: 0
$${f}'\left({x}\right)+\mathrm{4}{x}−\mathrm{6}{x}.{e}^{{x}^{\mathrm{2}} −{f}\left({x}\right)−\mathrm{1}} =\mathrm{0} \\ $$$${f}\left({x}\right)=¿ \\ $$
Question Number 204944 Answers: 1 Comments: 1
Question Number 204941 Answers: 0 Comments: 0
Question Number 205204 Answers: 1 Comments: 0
Question Number 204929 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\prod}}\:\frac{{n}^{\mathrm{2}} −{r}}{{n}^{\mathrm{2}} +{r}}\:\:=\:\:? \\ $$
Question Number 204926 Answers: 0 Comments: 2
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\bigtriangleup\mathrm{ABC} \\ $$$$\left(\mathrm{m}_{\boldsymbol{\mathrm{a}}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{b}}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{c}}} \right)^{\mathrm{2}} \:\geqslant\:\mathrm{9}\sqrt{\mathrm{3}}\:\mathrm{F} \\ $$
Question Number 204921 Answers: 1 Comments: 0
Pg 165 Pg 166 Pg 167 Pg 168 Pg 169 Pg 170 Pg 171 Pg 172 Pg 173 Pg 174
Terms of Service
Privacy Policy
Contact: info@tinkutara.com