Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 170

Question Number 204885    Answers: 1   Comments: 0

The density of a gas is 1.775kgm³ at 29°c and 10⁵N/m² pressure, its specific heat capacity at constant pressure is 856J/kg/K. Determine the ratio of its specific heat at constant pressure to that at constant volume?

The density of a gas is 1.775kgm³ at 29°c and 10⁵N/m² pressure, its specific heat capacity at constant pressure is 856J/kg/K. Determine the ratio of its specific heat at constant pressure to that at constant volume?

Question Number 204879    Answers: 2   Comments: 2

lim_(n→∞) n!(e−x_n ) = ? where x_(n ) = 1+(1/(1!))+(1/(2!))+...+(1/(n!))

$$\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{n}!\left({e}−\mathrm{x}_{\mathrm{n}} \right)\:=\:? \\ $$$$\:\:\mathrm{where}\:\mathrm{x}_{\mathrm{n}\:} =\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+...+\frac{\mathrm{1}}{\mathrm{n}!} \\ $$

Question Number 204878    Answers: 2   Comments: 0

prove that: (e)^(1/4) < ∫_0 ^( 1) e^( t^2 ) dt< ((1 + e)/2)

$$ \\ $$$$\:\:{prove}\:{that}: \\ $$$$ \\ $$$$\:\:\:\:\sqrt[{\mathrm{4}}]{{e}}\:<\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {e}^{\:{t}^{\mathrm{2}} } {dt}<\:\frac{\mathrm{1}\:+\:{e}}{\mathrm{2}} \\ $$

Question Number 204873    Answers: 1   Comments: 2

The figure below represents a design on the windows of a building. The curved part XY is an arc of a circle. The rise of the segmental arc is 10cm, its span is 100cm and XZ=ZY=120cm. calculate: (i) the radius of the circle (ii) the area of the segmental cap, correct to 2 significant figures. (iii) the total area of the design, correct to 3 significant figures.

$${The}\:{figure}\:{below}\:{represents}\:{a}\:{design} \\ $$$${on}\:{the}\:{windows}\:{of}\:{a}\:{building}.\:{The} \\ $$$${curved}\:{part}\:{XY}\:{is}\:{an}\:{arc}\:{of}\:{a}\:{circle}. \\ $$$${The}\:{rise}\:{of}\:{the}\:{segmental}\:{arc}\:{is}\:\mathrm{10}{cm}, \\ $$$${its}\:{span}\:{is}\:\mathrm{100}{cm}\:{and}\:{XZ}={ZY}=\mathrm{120}{cm}. \\ $$$${calculate}: \\ $$$$\left({i}\right)\:{the}\:{radius}\:{of}\:{the}\:{circle} \\ $$$$\left({ii}\right)\:{the}\:{area}\:{of}\:{the}\:{segmental}\:{cap}, \\ $$$${correct}\:{to}\:\mathrm{2}\:{significant}\:{figures}. \\ $$$$\left({iii}\right)\:{the}\:{total}\:{area}\:{of}\:{the}\:{design},\:{correct} \\ $$$${to}\:\mathrm{3}\:{significant}\:{figures}. \\ $$

Question Number 204869    Answers: 1   Comments: 0

How many distinct positive integer valued solution exist the equation (x^2 − 7x + 11)^((x^2 −13x + 42)) = 1 (a) 2 (b) 4 (c) 6 (d) 8

$$\mathrm{How}\:\mathrm{many}\:\mathrm{distinct}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{valued}\:\mathrm{solution}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{exist}\:\mathrm{the}\:\mathrm{equation}\:\left({x}^{\mathrm{2}} \:−\:\mathrm{7}{x}\:+\:\mathrm{11}\right)^{\left({x}^{\mathrm{2}} \:−\mathrm{13}{x}\:+\:\mathrm{42}\right)} \:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{8} \\ $$

Question Number 204866    Answers: 1   Comments: 0

∫ ((x+3)/(x^2 (√(2x+3)))) dx=?

$$\int\:\frac{{x}+\mathrm{3}}{{x}^{\mathrm{2}} \sqrt{\mathrm{2}{x}+\mathrm{3}}}\:{dx}=? \\ $$

Question Number 204853    Answers: 2   Comments: 0

f(x)=(√(1−log_((2x+5)) ((x+1)^2 ))) Find the domain of this function

$${f}\left({x}\right)=\sqrt{\mathrm{1}−\mathrm{log}_{\left(\mathrm{2}{x}+\mathrm{5}\right)} \left(\left({x}+\mathrm{1}\right)^{\mathrm{2}} \right)} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{this}\:\mathrm{function} \\ $$

Question Number 204851    Answers: 1   Comments: 0

Question Number 204845    Answers: 1   Comments: 0

Question Number 204844    Answers: 2   Comments: 1

find ⌊Σ_(n=1) ^(80) (1/( (√n)))⌋=?

$${find}\:\lfloor\underset{{n}=\mathrm{1}} {\overset{\mathrm{80}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\rfloor=? \\ $$

Question Number 204841    Answers: 1   Comments: 1

Racionalizar el denominador ((1 − x)/( (x)^(1/3) − (√(√x))))

$${Racionalizar}\:{el}\:{denominador} \\ $$$$\frac{\mathrm{1}\:−\:{x}}{\:\sqrt[{\mathrm{3}}]{{x}}\:−\:\sqrt{\sqrt{{x}}}} \\ $$

Question Number 204826    Answers: 1   Comments: 11

A rectangular enclosure is to be made against a straight wall using three lengths of fencing. The total length of the fencing available is 50m. Show that the area of the enclosure is 50x − 2x^2 , where x is the length of the sides perpendicular to the wall. Hence find the maximum area of the enclosure.

$${A}\:{rectangular}\:{enclosure}\:{is}\:{to}\:{be}\:{made} \\ $$$${against}\:{a}\:{straight}\:{wall}\:{using}\:{three} \\ $$$${lengths}\:{of}\:{fencing}.\:{The}\:{total}\:{length}\:{of} \\ $$$${the}\:{fencing}\:{available}\:{is}\:\mathrm{50}{m}.\:{Show} \\ $$$${that}\:{the}\:{area}\:{of}\:{the}\:{enclosure}\:{is} \\ $$$$\mathrm{50}{x}\:−\:\mathrm{2}{x}^{\mathrm{2}} ,\:{where}\:{x}\:{is}\:{the}\:{length}\:{of}\:{the} \\ $$$${sides}\:{perpendicular}\:{to}\:{the}\:{wall}.\:{Hence} \\ $$$${find}\:{the}\:{maximum}\:{area}\:{of}\:{the} \\ $$$${enclosure}. \\ $$

Question Number 204815    Answers: 2   Comments: 0

Given (3p^2 −p+q^3 )^(12) , find the coefficient of p^(10) q^6

$$\:\:\:\:\:\mathrm{Given}\:\left(\mathrm{3p}^{\mathrm{2}} −\mathrm{p}+\mathrm{q}^{\mathrm{3}} \right)^{\mathrm{12}} \:,\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\:\:\:\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{p}^{\mathrm{10}} \mathrm{q}^{\mathrm{6}} \\ $$

Question Number 204805    Answers: 0   Comments: 5

Why lim_(n→∞) (x^n u_n )=0 ,When u_n is bounded

$$\mathrm{Why}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left({x}^{{n}} {u}_{{n}} \right)=\mathrm{0}\:,\mathrm{When}\:{u}_{{n}} \:\mathrm{is}\:\mathrm{bounded}\: \\ $$

Question Number 204804    Answers: 1   Comments: 3

Evaluate ∫((sinx)/(x^4 +x^2 +1))dx I need full detailed explanation, thank you in advance.

$$\mathrm{Evaluate}\:\int\frac{\mathrm{sinx}}{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{need}\:\mathrm{full}\:\mathrm{detailed}\:\mathrm{explanation},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{in} \\ $$$$\mathrm{advance}. \\ $$

Question Number 204802    Answers: 1   Comments: 0

Wi-Fi code problem: ∫_(−2) ^( 2) (x^3 cos((x/2))+(1/2))(√(4−x^2 ))dx

$$\mathrm{Wi}-\mathrm{Fi}\:\mathrm{code}\:\mathrm{problem}: \\ $$$$\int_{−\mathrm{2}} ^{\:\mathrm{2}} \left({x}^{\mathrm{3}} \mathrm{cos}\left(\frac{{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\mathrm{d}{x} \\ $$

Question Number 204800    Answers: 1   Comments: 0

Question Number 204783    Answers: 0   Comments: 0

Question Number 204756    Answers: 1   Comments: 23

$$ \\ $$

Question Number 204754    Answers: 1   Comments: 0

$$ \\ $$

Question Number 204739    Answers: 2   Comments: 0

Question Number 204742    Answers: 1   Comments: 4

Solve for real x

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:{x} \\ $$

Question Number 204733    Answers: 2   Comments: 0

Find: ((59^2 + 48^2 + 41^2 − 30^2 )/(68^2 + 52^2 + 32^2 − 48^2 )) = ?

$$\mathrm{Find}:\:\:\:\frac{\mathrm{59}^{\mathrm{2}} \:+\:\mathrm{48}^{\mathrm{2}} \:+\:\mathrm{41}^{\mathrm{2}} \:−\:\mathrm{30}^{\mathrm{2}} }{\mathrm{68}^{\mathrm{2}} \:+\:\mathrm{52}^{\mathrm{2}} \:+\:\mathrm{32}^{\mathrm{2}} \:−\:\mathrm{48}^{\mathrm{2}} }\:=\:? \\ $$

Question Number 204729    Answers: 1   Comments: 0

Question Number 204753    Answers: 0   Comments: 7

A wave has an amplitude of 20cm from rest. If the angle of oscillation is 30⁰. Find the displacement of the wave.

A wave has an amplitude of 20cm from rest. If the angle of oscillation is 30⁰. Find the displacement of the wave.

Question Number 204715    Answers: 2   Comments: 0

prove that ∫_0 ^1 ((ln^2 (1−x))/x)dx=2ζ(3)

$${prove}\:{that} \\ $$$$\overset{\mathrm{1}} {\int}_{\mathrm{0}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{{x}}{dx}=\mathrm{2}\zeta\left(\mathrm{3}\right) \\ $$$$ \\ $$

  Pg 165      Pg 166      Pg 167      Pg 168      Pg 169      Pg 170      Pg 171      Pg 172      Pg 173      Pg 174   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com