Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1699

Question Number 38373    Answers: 1   Comments: 7

Question Number 38367    Answers: 2   Comments: 2

If f(x)=x^3 +1 then f^(−1) (x)=?

$${If}\:{f}\left({x}\right)={x}^{\mathrm{3}} +\mathrm{1}\:{then}\:{f}^{−\mathrm{1}} \left({x}\right)=? \\ $$

Question Number 38366    Answers: 1   Comments: 0

At time t,the force acting on a particle P of mass 2kg is (2ti + 4j)N.P is initially at rest at the point with position vector (i + 2j). Find: a) the velocity of P when t = 2. b) the position vector when t = 2.

$${At}\:{time}\:{t},{the}\:{force}\:{acting}\:{on}\:{a}\:{particle} \\ $$$${P}\:{of}\:{mass}\:\mathrm{2}{kg}\:{is}\:\left(\mathrm{2}\boldsymbol{{ti}}\:+\:\mathrm{4}\boldsymbol{{j}}\right){N}.{P} \\ $$$${is}\:{initially}\:{at}\:{rest}\:{at}\:{the}\:{point}\:{with} \\ $$$${position}\:{vector}\:\left(\boldsymbol{{i}}\:+\:\mathrm{2}\boldsymbol{{j}}\right). \\ $$$${Find}: \\ $$$$\left.{a}\right)\:{the}\:{velocity}\:{of}\:{P}\:{when}\:{t}\:=\:\mathrm{2}. \\ $$$$\left.{b}\right)\:{the}\:{position}\:{vector}\:{when}\:{t}\:=\:\mathrm{2}. \\ $$

Question Number 38362    Answers: 0   Comments: 0

Question Number 38365    Answers: 1   Comments: 0

A particle P moves on a straightline from a fixed point O and the distance x from O after t seconds is given as x = (1/(4 )) t^4 − (3/2) t^2 + 2t. Find: a) the velocity of P when t = 2, b) the acceleration of P when t = 2, c) the time at which the speed P is Minimum.

$${A}\:{particle}\:{P}\:{moves}\:{on}\:{a}\:{straightline} \\ $$$${from}\:{a}\:{fixed}\:{point}\:{O}\:{and}\:{the}\:{distance} \\ $$$${x}\:{from}\:{O}\:{after}\:{t}\:{seconds}\:{is}\:{given}\:{as} \\ $$$$\:{x}\:=\:\frac{\mathrm{1}}{\mathrm{4}\:}\:{t}^{\mathrm{4}} \:−\:\frac{\mathrm{3}}{\mathrm{2}}\:{t}^{\mathrm{2}} \:+\:\mathrm{2}{t}. \\ $$$${Find}: \\ $$$$\left.{a}\right)\:{the}\:{velocity}\:{of}\:{P}\:{when}\:{t}\:=\:\mathrm{2}, \\ $$$$\left.{b}\right)\:{the}\:{acceleration}\:{of}\:{P}\:{when}\:{t}\:=\:\mathrm{2}, \\ $$$$\left.{c}\right)\:{the}\:{time}\:{at}\:{which}\:{the}\:{speed}\:{P}\: \\ $$$${is}\:{Minimum}. \\ $$

Question Number 38332    Answers: 1   Comments: 0

((3+(√5))/2) −(√((3+(√5))/2)) = ?!

$$\:\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:−\sqrt{\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}}\:=\:?! \\ $$

Question Number 38310    Answers: 1   Comments: 4

let f(x)=∫_0 ^(+∞) ((arctan(xt))/(1+t^2 ))dt with x≥0 1) calculate f^′ (x) then a simple form of f(x) 2) calculate ∫_0 ^(+∞) ((arctant)/(1+t^2 ))dt 3) calculate ∫_0 ^(+∞) ((arctan(2t))/(1+t^2 ))dt

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{arctan}\left({xt}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:{with}\:{x}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{then}\:{a}\:{simple}\:{form}\:{of}\:\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{arctant}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$

Question Number 38323    Answers: 1   Comments: 1

find Σ_(n=1) ^(+∞) ((4n)/((2n−1)^2 (2n+1)^2 ))

$${find}\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{4}{n}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 38296    Answers: 0   Comments: 7

i have a suggestion pls comment...we are all virtual friends common bond is mathematics so may know each other by posting our self photo...if administator give permission..

$${i}\:{have}\:{a}\:{suggestion}\:{pls}\:{comment}...{we}\:{are}\:{all} \\ $$$${virtual}\:{friends}\:{common}\:{bond}\:{is}\:{mathematics} \\ $$$${so}\:{may}\:{know}\:{each}\:{other}\:{by}\:{posting}\:{our}\:{self} \\ $$$${photo}...{if}\:{administator}\:{give}\:{permission}.. \\ $$

Question Number 38291    Answers: 1   Comments: 0

Question Number 38289    Answers: 1   Comments: 0

Question Number 38288    Answers: 1   Comments: 0

tan α−tan β = 2tan θ asin α−bsin β = lsin θ express sin α, sin β in terms of 𝛉.

$$\mathrm{tan}\:\alpha−\mathrm{tan}\:\beta\:=\:\mathrm{2tan}\:\theta \\ $$$${a}\mathrm{sin}\:\alpha−{b}\mathrm{sin}\:\beta\:=\:{l}\mathrm{sin}\:\theta \\ $$$${express}\:\mathrm{sin}\:\alpha,\:\mathrm{sin}\:\beta\:\:{in}\:{terms}\:{of}\:\boldsymbol{\theta}. \\ $$

Question Number 38286    Answers: 0   Comments: 1

(i) given the function f(t)=e^t and g(t)=lnt show that f○g(t)=g○f(t) (ii)if f(t)=at , g(t)=bt^2 +3 (fog)(2)=35 and (fog)(3)=75 find the value of a and b

$$\left(\boldsymbol{{i}}\right)\:\mathrm{given}\:\mathrm{the}\:\mathrm{function}\:\boldsymbol{{f}}\left(\boldsymbol{{t}}\right)=\boldsymbol{\mathrm{e}}^{\boldsymbol{{t}}} \:\:\boldsymbol{\mathrm{and}}\:\boldsymbol{{g}}\left(\boldsymbol{{t}}\right)=\boldsymbol{\mathrm{ln}{t}} \\ $$$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{{f}}\circ\boldsymbol{{g}}\left(\boldsymbol{{t}}\right)=\boldsymbol{{g}}\circ\boldsymbol{{f}}\left(\boldsymbol{{t}}\right) \\ $$$$\left(\boldsymbol{{ii}}\right)\mathrm{if}\:\boldsymbol{{f}}\left(\boldsymbol{{t}}\right)=\boldsymbol{{at}}\:,\:\boldsymbol{{g}}\left(\boldsymbol{{t}}\right)=\boldsymbol{{bt}}^{\mathrm{2}} +\mathrm{3} \\ $$$$\left(\boldsymbol{{fog}}\right)\left(\mathrm{2}\right)=\mathrm{35}\:\boldsymbol{\mathrm{and}}\:\left(\boldsymbol{{fog}}\right)\left(\mathrm{3}\right)=\mathrm{75} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\boldsymbol{{a}}\:\mathrm{and}\:\boldsymbol{{b}} \\ $$

Question Number 38284    Answers: 1   Comments: 2

Find all the complex number in the rectangular form such that (z−1)^4 =−1

$${Find}\:{all}\:{the}\:{complex}\:{number}\:{in}\:{the} \\ $$$${rectangular}\:{form}\:{such}\:{that} \\ $$$$\left({z}−\mathrm{1}\right)^{\mathrm{4}} =−\mathrm{1} \\ $$$$ \\ $$

Question Number 38282    Answers: 1   Comments: 0

Question Number 38281    Answers: 1   Comments: 0

Question Number 38262    Answers: 1   Comments: 0

Question Number 38252    Answers: 0   Comments: 2

if x^2 + 3xy − y^2 = 3 find (dy/dx) at point (1,1) hence differentiate ((sin x)/(1 + x)) with respect to x.

$${if}\:{x}^{\mathrm{2}} \:+\:\mathrm{3}{xy}\:−\:{y}^{\mathrm{2}} \:=\:\mathrm{3}\:{find}\: \\ $$$$\frac{{dy}}{{dx}}\:{at}\:{point}\:\left(\mathrm{1},\mathrm{1}\right)\:{hence} \\ $$$${differentiate}\:\frac{{sin}\:{x}}{\mathrm{1}\:+\:{x}}\:{with}\:{respect} \\ $$$${to}\:{x}. \\ $$

Question Number 38250    Answers: 0   Comments: 0

It is given that the first term of a GP is the last term of an AP. the second term of the AP is the third term of the GP..detemine the Geometric mean of the GP is the fourth term of the GP is 16.

$$\:\:{It}\:{is}\:{given}\:{that}\:{the}\:{first}\:{term}\:{of} \\ $$$${a}\:{GP}\:\:{is}\:{the}\:{last}\:{term}\:{of}\:{an}\:{AP}. \\ $$$${the}\:{second}\:{term}\:{of}\:{the}\:{AP}\:{is}\:{the} \\ $$$${third}\:{term}\:{of}\:{the}\:{GP}..{detemine} \\ $$$${the}\:{Geometric}\:{mean}\:{of}\:{the}\:{GP}\:{is}\: \\ $$$$\:{the}\:{fourth}\:{term}\:{of}\:{the}\:{GP}\:{is}\:\mathrm{16}. \\ $$

Question Number 38247    Answers: 2   Comments: 2

Question Number 38235    Answers: 0   Comments: 4

A man 2m 50cm tall stands a distance of 3m in front of a large vertical plane mirror. i)what is the shortest length of the mirror that will enable the man see himself fully? ii)what is the answer of the above if the man were 5m away?

$${A}\:{man}\:\mathrm{2}{m}\:\mathrm{50}{cm}\:{tall}\:{stands}\:{a} \\ $$$${distance}\:{of}\:\mathrm{3}{m}\:{in}\:{front}\:{of}\:{a}\:{large} \\ $$$${vertical}\:{plane}\:{mirror}. \\ $$$$\left.{i}\right){what}\:{is}\:{the}\:{shortest}\:{length}\:{of}\:{the} \\ $$$${mirror}\:{that}\:{will}\:{enable}\:{the}\:{man}\:{see} \\ $$$${himself}\:{fully}? \\ $$$$\left.{ii}\right){what}\:{is}\:{the}\:{answer}\:{of}\:{the}\:{above} \\ $$$${if}\:{the}\:{man}\:{were}\:\mathrm{5}{m}\:{away}? \\ $$

Question Number 38261    Answers: 1   Comments: 0

Question Number 38232    Answers: 4   Comments: 1

Differentiate tan^(−1) ((((√(1+x^2 ))−1)/x)) without using any trigonometric substitution !

$$\mathrm{Differentiate}\: \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{1}}{{x}}\right)\:\: \\ $$$${without}\:{using}\:{any}\:{trigonometric}\: \\ $$$${substitution}\:! \\ $$

Question Number 38222    Answers: 0   Comments: 1

If U={−5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5} A={x/x^2 =25, x ∈ Z} B={x/x^2 +5=9, x ∈ Z} and C={x/−2≤ x ≤ 2, x ∈ Z} then (A ∩ B ∩ C)^c ∩ (A△B)^c =?

$$\mathrm{If}\:\mathbb{U}=\left\{−\mathrm{5},\:−\mathrm{4},\:−\mathrm{3},\:−\mathrm{2},\:−\mathrm{1},\:\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5}\right\} \\ $$$$\mathrm{A}=\left\{{x}/{x}^{\mathrm{2}} =\mathrm{25},\:{x}\:\in\:\mathrm{Z}\right\} \\ $$$$\mathrm{B}=\left\{{x}/{x}^{\mathrm{2}} +\mathrm{5}=\mathrm{9},\:{x}\:\in\:\mathrm{Z}\right\}\:\mathrm{and} \\ $$$$\mathrm{C}=\left\{{x}/−\mathrm{2}\leqslant\:{x}\:\leqslant\:\mathrm{2},\:{x}\:\in\:\mathrm{Z}\right\}\:\mathrm{then} \\ $$$$\left(\mathrm{A}\:\cap\:\mathrm{B}\:\cap\:\mathrm{C}\right)^{\mathrm{c}} \:\cap\:\left(\mathrm{A}\bigtriangleup\mathrm{B}\right)^{\mathrm{c}} =? \\ $$

Question Number 38211    Answers: 0   Comments: 2

let x>0 and F(x)= ∫_0 ^(+∞) ((arctan(xt^2 ))/(1+t^2 ))dt 1) find a simple form of F(x) 2)find the value of ∫_0 ^∞ ((arctan(2t^2 ))/(1+t^2 ))dt 3)find the value of ∫_0 ^∞ ((arctan(3t^2 ))/(1+t^2 ))dt.

$${let}\:{x}>\mathrm{0}\:{and}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{+\infty} \:\frac{{arctan}\left({xt}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{F}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{2}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left(\mathrm{3}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}. \\ $$

Question Number 38210    Answers: 2   Comments: 4

let f(a)= ∫_0 ^π (dθ/(a +sin^2 θ)) (a from R) 1) find f(a) 2)calculate g(a)= ∫_0 ^π (dθ/((a+sin^2 θ)^2 )) 3)calculate ∫_0 ^π (dθ/(1+sin^2 θ)) and ∫_0 ^π (dθ/(2+sin^2 θ)) 4) calculate ∫_0 ^π (dθ/((3 +sin^2 θ)^2 )) .

$${let}\:{f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{d}\theta}{{a}\:+{sin}^{\mathrm{2}} \theta}\:\:\:\left({a}\:{from}\:{R}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{g}\left({a}\right)=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{d}\theta}{\left({a}+{sin}^{\mathrm{2}} \theta\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{d}\theta}{\mathrm{1}+{sin}^{\mathrm{2}} \theta}\:{and}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{d}\theta}{\mathrm{2}+{sin}^{\mathrm{2}} \theta} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{d}\theta}{\left(\mathrm{3}\:+{sin}^{\mathrm{2}} \theta\right)^{\mathrm{2}} }\:. \\ $$

  Pg 1694      Pg 1695      Pg 1696      Pg 1697      Pg 1698      Pg 1699      Pg 1700      Pg 1701      Pg 1702      Pg 1703   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com