Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1699
Question Number 38124 Answers: 1 Comments: 0
$${prove}\:{that}\:\:\int\:\:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:={ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:+{c} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int\:\:\:\frac{{dx}}{\sqrt{{a}+{x}^{\mathrm{2}} }}\:{with}\:{a}>\mathrm{0} \\ $$
Question Number 38123 Answers: 2 Comments: 1
$${f}\:{is}\:{a}\:{function}\:{positive}\:\:{and}\:{C}^{\mathrm{1}} \:\: \\ $$$$\left.\mathrm{1}\right)\:{find}\:\int\:\:\:\:\frac{{f}^{'} }{\mathrm{2}\sqrt{{f}}\sqrt{\mathrm{1}+{f}}}{dx} \\ $$$$\left.\mathrm{2}\right){let}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{x}^{\frac{{n}}{\mathrm{2}}} }{{x}\sqrt{\mathrm{1}+{x}^{{n}} }} \\ $$$${calculate}\:{A}_{{n}} \:\:{and}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 38122 Answers: 1 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{sinx}}{\sqrt{\mathrm{1}+{cos}^{\mathrm{2}} {x}}}{dx} \\ $$
Question Number 38121 Answers: 0 Comments: 5
$${let}\:{x}>\mathrm{0}\:{find}\:{F}\left({x}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{arctan}\left({xt}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\: \\ $$
Question Number 38120 Answers: 0 Comments: 2
$${let}\:\:{n}\:{from}\:{N}\:{and} \\ $$$${find}\:{the}\:{value}\:{of}\:\:{A}_{{n}} =\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{t}^{{n}} \sqrt{{t}−\mathrm{1}}} \\ $$
Question Number 38119 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{4}} \sqrt{{x}−\mathrm{1}}} \\ $$
Question Number 38118 Answers: 0 Comments: 1
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+\frac{{t}^{{a}} }{\mathrm{2}}}{dt}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left({na}+\mathrm{1}\right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left(\mathrm{3}{n}+\mathrm{1}\right)} \\ $$
Question Number 38117 Answers: 0 Comments: 0
$${let}\:{x}\:{and}\:{y}\:{from}\:{R}\:{prove}\:{that} \\ $$$$\mid{cos}\left({x}+{iy}\right)\mid={cos}^{\mathrm{2}} {x}\:+{sh}^{\mathrm{2}} {y} \\ $$$$\mid{sin}\left({x}+{iy}\right)\mid^{\mathrm{2}} ={sin}^{\mathrm{2}} {x}\:+{sh}^{\mathrm{2}} {y} \\ $$
Question Number 38116 Answers: 0 Comments: 1
$${find}\:\:\:\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\lambda{x}\right)}{{ch}\left(\mathrm{2}{x}\right)}{dx}\: \\ $$
Question Number 38115 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{sh}\left(\mathrm{3}{x}\right)}{dx}\: \\ $$
Question Number 38114 Answers: 0 Comments: 2
$${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{{dx}}{\left({p}\:+{cost}\right)^{{n}} }\:\:{with}\:{p}>\mathrm{1} \\ $$$${find}\:{the}\:{value}\:{of}\:{I}_{{n}} \\ $$
Question Number 38113 Answers: 0 Comments: 2
$${let}\:{p}>\mathrm{1}\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\:\frac{{dt}}{\left({p}\:+{cost}\right)^{\mathrm{2}} } \\ $$
Question Number 38112 Answers: 1 Comments: 1
$${prove}\:{that}\:\:{arctan}\left({x}\right)=\:\frac{{i}}{\mathrm{2}}{ln}\left(\frac{{i}+{x}}{{i}−{x}}\right)\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$
Question Number 38111 Answers: 1 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{e}^{{x}} \:−\left[{x}\right]}{{x}} \\ $$
Question Number 38110 Answers: 0 Comments: 0
$${let}\:{x}\:{from}\:{R}\:{find}\:{the}\:{value}\:{of} \\ $$$${f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\pi} {ln}\left({x}^{\mathrm{2}} \:−\mathrm{2}{x}\:{cos}\theta\:+\mathrm{1}\right){d}\theta \\ $$
Question Number 38109 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right)\:{find}\:\:{S}\left({x}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}} \\ $$$$ \\ $$
Question Number 38108 Answers: 0 Comments: 1
$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} } \\ $$
Question Number 38107 Answers: 0 Comments: 0
$${find}\:{C}\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }{dx}\:\:{and}\:{S}=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$
Question Number 38106 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:{e}^{−\mathrm{3}{t}} {ln}\left(\mathrm{1}+{e}^{{t}} \right){dt}\:. \\ $$
Question Number 38105 Answers: 1 Comments: 0
$${find}\:\int\:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{2}{x}+\mathrm{1}}\:+\sqrt{\mathrm{2}{x}−\mathrm{1}}}\: \\ $$
Question Number 38104 Answers: 1 Comments: 0
$${find}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)\sqrt{{x}+\mathrm{3}}} \\ $$
Question Number 38103 Answers: 0 Comments: 0
$${find}\:{I}\left(\lambda\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{xdx}}{\lambda\:+{tanx}}\:\:\lambda\:{from}\:{R}. \\ $$
Question Number 38102 Answers: 0 Comments: 0
$${let}\:{B}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:{e}^{−\left({x}−\left[{x}\right]\right)^{\mathrm{2}} } {dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{B}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{B}_{{n}} \\ $$
Question Number 38101 Answers: 0 Comments: 1
$${let}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:{e}^{{x}−\left[{x}\right]} {dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 38100 Answers: 0 Comments: 1
$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \left({x}−\left[{x}\right]\right)^{\mathrm{2}} {dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 38099 Answers: 0 Comments: 5
$${x}^{{x}} =\mathrm{0}.\mathrm{25} \\ $$$${find}\:{x} \\ $$
Pg 1694 Pg 1695 Pg 1696 Pg 1697 Pg 1698 Pg 1699 Pg 1700 Pg 1701 Pg 1702 Pg 1703
Terms of Service
Privacy Policy
Contact: info@tinkutara.com