Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1698
Question Number 37021 Answers: 0 Comments: 0
Question Number 37020 Answers: 0 Comments: 0
Question Number 37018 Answers: 3 Comments: 3
Question Number 37010 Answers: 0 Comments: 0
Question Number 37009 Answers: 0 Comments: 0
Question Number 37008 Answers: 0 Comments: 0
Question Number 37005 Answers: 0 Comments: 0
Question Number 37004 Answers: 3 Comments: 0
Question Number 36997 Answers: 2 Comments: 1
$$\int\:\sqrt{\frac{\mathrm{1}+{x}}{{x}}\:}{dx}\:=\:? \\ $$
Question Number 36990 Answers: 0 Comments: 0
Question Number 36986 Answers: 0 Comments: 0
Question Number 36985 Answers: 0 Comments: 0
Question Number 36978 Answers: 1 Comments: 1
$${if}\:\:\frac{{a}^{\mathrm{2}} }{{b}+{c}}\:=\:\frac{{b}^{\mathrm{2}} }{{c}+{a}}\:=\:\frac{{c}^{\mathrm{2}} }{{a}+{b}}\:=\:\mathrm{1}\:{then}\:{find}\:{the}\:{value}\:{of}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{a}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+{b}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+{c}} \\ $$
Question Number 36965 Answers: 2 Comments: 3
$$\int\frac{{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{1}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}= \\ $$
Question Number 36957 Answers: 2 Comments: 0
$$\mathrm{Interval}\:\mathrm{in}\:\mathrm{which}\:\mathrm{given}\:\mathrm{function}\:\mathrm{is} \\ $$$${decreasing}. \\ $$$$\mathrm{f}\left({x}\right)=\:\left(\mathrm{2}^{{x}} −\mathrm{1}\right)\left(\mathrm{2}^{{x}} −\mathrm{2}\right)^{\mathrm{2}} \\ $$
Question Number 36953 Answers: 1 Comments: 3
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{nsin}\:\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\:\right)\:,\left(\:\mathrm{n}\in\mathbb{N}\right). \\ $$
Question Number 36948 Answers: 0 Comments: 2
$${calculate}\:\:\:\int\int_{{D}} \sqrt{{xy}}\:{dxdy}\:\:{with} \\ $$$${D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:/\:\left({x}+{y}\right)^{\mathrm{2}} \:\geqslant\mathrm{2}{x}\:\:{and}\:{xy}\geqslant\mathrm{0}\right\} \\ $$
Question Number 36947 Answers: 1 Comments: 1
$${integrate}\:{the}\:{d}.{equation}\:\:{xy}^{'} \:+{y}\:=\:\frac{\mathrm{2}{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:. \\ $$
Question Number 36946 Answers: 0 Comments: 2
$${calculate}\varphi\left(\lambda\right)=\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\:\frac{{cos}\left({t}\right)}{\mathrm{1}−\mathrm{2}\lambda\:{cost}\:+\lambda^{\mathrm{2}} }\:{dt} \\ $$
Question Number 36945 Answers: 0 Comments: 0
$${calulate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{dx}}{\sqrt{{tan}\left({x}\right)\left(\mathrm{1}−{tanx}\right)}} \\ $$
Question Number 36944 Answers: 1 Comments: 1
$${find}\:\varphi\left({a}\right)\:=\:\int_{{a}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} \:−{a}^{\mathrm{2}} }}\:\:\:{with}\:{a}>\mathrm{0} \\ $$
Question Number 36943 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{lnx}}{\sqrt{{x}}\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx} \\ $$
Question Number 36942 Answers: 1 Comments: 0
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{cosx}}{\sqrt{\mathrm{1}+{cosx}\:{sinx}}}{dx}\:{and}\:{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sinx}}{\sqrt{\mathrm{1}+{cosx}\:{sinx}}}{dx} \\ $$$${prove}\:{that}\:{I}={J}\:\:{then}\:{calculate}\:{I}\:{and}\:{J}\:. \\ $$
Question Number 36941 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{3}\pi}{\mathrm{4}}} \:\:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{sin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} } \\ $$
Question Number 36940 Answers: 0 Comments: 1
$${find}\:{f}\left({a}\right)=\:\int_{\mathrm{0}} ^{{a}} \:{arctan}\left(\sqrt{{a}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }\right){dx} \\ $$
Question Number 36939 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)\:}\:{dx} \\ $$
Pg 1693 Pg 1694 Pg 1695 Pg 1696 Pg 1697 Pg 1698 Pg 1699 Pg 1700 Pg 1701 Pg 1702
Terms of Service
Privacy Policy
Contact: info@tinkutara.com