Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1698

Question Number 37021    Answers: 0   Comments: 0

Question Number 37020    Answers: 0   Comments: 0

Question Number 37018    Answers: 3   Comments: 3

Question Number 37010    Answers: 0   Comments: 0

Question Number 37009    Answers: 0   Comments: 0

Question Number 37008    Answers: 0   Comments: 0

Question Number 37005    Answers: 0   Comments: 0

Question Number 37004    Answers: 3   Comments: 0

Question Number 36997    Answers: 2   Comments: 1

∫ (√(((1+x)/x) ))dx = ?

$$\int\:\sqrt{\frac{\mathrm{1}+{x}}{{x}}\:}{dx}\:=\:? \\ $$

Question Number 36990    Answers: 0   Comments: 0

Question Number 36986    Answers: 0   Comments: 0

Question Number 36985    Answers: 0   Comments: 0

Question Number 36978    Answers: 1   Comments: 1

if (a^2 /(b+c)) = (b^2 /(c+a)) = (c^2 /(a+b)) = 1 then find the value of (1/(1+a)) + (1/(1+b)) + (1/(1+c))

$${if}\:\:\frac{{a}^{\mathrm{2}} }{{b}+{c}}\:=\:\frac{{b}^{\mathrm{2}} }{{c}+{a}}\:=\:\frac{{c}^{\mathrm{2}} }{{a}+{b}}\:=\:\mathrm{1}\:{then}\:{find}\:{the}\:{value}\:{of}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{a}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+{b}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+{c}} \\ $$

Question Number 36965    Answers: 2   Comments: 3

∫((x^5 −x^4 +x^3 −1)/((x^2 −x+1)^3 ))dx=

$$\int\frac{{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{1}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}= \\ $$

Question Number 36957    Answers: 2   Comments: 0

Interval in which given function is decreasing. f(x)= (2^x −1)(2^x −2)^2

$$\mathrm{Interval}\:\mathrm{in}\:\mathrm{which}\:\mathrm{given}\:\mathrm{function}\:\mathrm{is} \\ $$$${decreasing}. \\ $$$$\mathrm{f}\left({x}\right)=\:\left(\mathrm{2}^{{x}} −\mathrm{1}\right)\left(\mathrm{2}^{{x}} −\mathrm{2}\right)^{\mathrm{2}} \\ $$

Question Number 36953    Answers: 1   Comments: 3

lim_(n→∞) nsin (2π(√(1+n^2 )) ) ,( n∈N).

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{nsin}\:\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\:\right)\:,\left(\:\mathrm{n}\in\mathbb{N}\right). \\ $$

Question Number 36948    Answers: 0   Comments: 2

calculate ∫∫_D (√(xy)) dxdy with D={(x,y)∈R^2 / (x+y)^2 ≥2x and xy≥0}

$${calculate}\:\:\:\int\int_{{D}} \sqrt{{xy}}\:{dxdy}\:\:{with} \\ $$$${D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:/\:\left({x}+{y}\right)^{\mathrm{2}} \:\geqslant\mathrm{2}{x}\:\:{and}\:{xy}\geqslant\mathrm{0}\right\} \\ $$

Question Number 36947    Answers: 1   Comments: 1

integrate the d.equation xy^′ +y = ((2x)/(√(1−x^4 ))) .

$${integrate}\:{the}\:{d}.{equation}\:\:{xy}^{'} \:+{y}\:=\:\frac{\mathrm{2}{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:. \\ $$

Question Number 36946    Answers: 0   Comments: 2

calculateϕ(λ)= ∫_0 ^π ((cos(t))/(1−2λ cost +λ^2 )) dt

$${calculate}\varphi\left(\lambda\right)=\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\:\frac{{cos}\left({t}\right)}{\mathrm{1}−\mathrm{2}\lambda\:{cost}\:+\lambda^{\mathrm{2}} }\:{dt} \\ $$

Question Number 36945    Answers: 0   Comments: 0

calulate ∫_0 ^(π/4) (dx/(√(tan(x)(1−tanx))))

$${calulate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{dx}}{\sqrt{{tan}\left({x}\right)\left(\mathrm{1}−{tanx}\right)}} \\ $$

Question Number 36944    Answers: 1   Comments: 1

find ϕ(a) = ∫_a ^(+∞) (dx/((1+x^2 )(√(x^2 −a^2 )))) with a>0

$${find}\:\varphi\left({a}\right)\:=\:\int_{{a}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} \:−{a}^{\mathrm{2}} }}\:\:\:{with}\:{a}>\mathrm{0} \\ $$

Question Number 36943    Answers: 0   Comments: 1

find the value of ∫_0 ^1 ((lnx)/((√x)(1−x)^(3/2) ))dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{lnx}}{\sqrt{{x}}\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx} \\ $$

Question Number 36942    Answers: 1   Comments: 0

let I = ∫_0 ^(π/2) ((cosx)/(√(1+cosx sinx)))dx and J =∫_0 ^(π/2) ((sinx)/(√(1+cosx sinx)))dx prove that I=J then calculate I and J .

$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{cosx}}{\sqrt{\mathrm{1}+{cosx}\:{sinx}}}{dx}\:{and}\:{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sinx}}{\sqrt{\mathrm{1}+{cosx}\:{sinx}}}{dx} \\ $$$${prove}\:{that}\:{I}={J}\:\:{then}\:{calculate}\:{I}\:{and}\:{J}\:. \\ $$

Question Number 36941    Answers: 0   Comments: 1

calculate ∫_0 ^((3π)/4) (dt/((1+sin^2 t)^2 ))

$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{3}\pi}{\mathrm{4}}} \:\:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{sin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} } \\ $$

Question Number 36940    Answers: 0   Comments: 1

find f(a)= ∫_0 ^a arctan((√(a^2 −x^2 )))dx

$${find}\:{f}\left({a}\right)=\:\int_{\mathrm{0}} ^{{a}} \:{arctan}\left(\sqrt{{a}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }\right){dx} \\ $$

Question Number 36939    Answers: 0   Comments: 0

calculate ∫_0 ^1 ^3 (√(x^2 (1−x) )) dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)\:}\:{dx} \\ $$

  Pg 1693      Pg 1694      Pg 1695      Pg 1696      Pg 1697      Pg 1698      Pg 1699      Pg 1700      Pg 1701      Pg 1702   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com