Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1698
Question Number 37845 Answers: 0 Comments: 0
Question Number 37840 Answers: 1 Comments: 0
$${f}\left(\theta,\phi\right)=\frac{\mathrm{cos}\:\phi\left[\mathrm{cos}\:\theta\:\mathrm{tan}\:\left(\frac{\theta+\phi}{\mathrm{2}}\right)−\mathrm{sin}\:\theta\right]^{\mathrm{2}} }{\mathrm{cos}\:\phi\mathrm{tan}\:\left(\frac{\theta+\phi}{\mathrm{2}}\right)+\mathrm{sin}\:\phi} \\ $$$$\:\phi\:\in\:\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\:,\:\theta\:\in\:\left(−\frac{\pi}{\mathrm{2}},\:\frac{\pi}{\mathrm{2}}\right); \\ $$$${find}\:{maximum}\:{f}\left(\theta,\phi\right). \\ $$
Question Number 37838 Answers: 0 Comments: 5
$${let}\:{f}\left({x}\right)=\:{e}^{−\mathrm{2}{x}} \:{arctan}\left({x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Question Number 37820 Answers: 1 Comments: 2
$${let}\:{f}\left({x}\right)=\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}. \\ $$
Question Number 37819 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:\:{of} \\ $$$${u}_{{n}+\mathrm{1}} ={u}_{{n}} \:+\:{ln}\left(\mathrm{1}+{e}^{−{u}_{{n}} } \right)\:\:{with}\:{u}_{\mathrm{0}} =\mathrm{0} \\ $$
Question Number 37818 Answers: 0 Comments: 1
$${let}\:\mathrm{0}<{u}_{\mathrm{0}} <\mathrm{1}\:\:{and}\:{u}_{{n}+\mathrm{1}} =\sqrt{\frac{\mathrm{1}+{u}_{{n}} }{\mathrm{2}}} \\ $$$${study}\:{the}\:{convergence}\:{of}\:{u}_{{n}} \: \\ $$$$ \\ $$
Question Number 37817 Answers: 1 Comments: 1
$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:{x}^{{n}} \left(\mathrm{1}−{cos}\left(\frac{\pi}{{x}^{{n}} }\right)\right)\:{with}\:{x} \\ $$$${from}\:{R}\:{and}\:{x}\neq\mathrm{0} \\ $$
Question Number 37816 Answers: 0 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{ln}\left({x}+{e}^{{sinx}} \right)\:−{x}^{\mathrm{2}} }{{sh}\left(\mathrm{2}{x}\right)} \\ $$
Question Number 37815 Answers: 1 Comments: 1
$${let}\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:{cos}^{\mathrm{2}} \left(\pi\left[{x}\right]\right){dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:{sin}^{\mathrm{2}} \left(\pi\left[{x}\right]\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:+{J}\:\:{and}\:{I}\:−{J} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:{I}\:{and}\:{J}. \\ $$
Question Number 37813 Answers: 1 Comments: 0
$${find}\:{A}_{{n}} \:\:=\:\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \:\:{x}\sqrt{{x}}{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right){dx} \\ $$$${then}\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} . \\ $$
Question Number 37812 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\mathrm{2}{x}} {sin}\left\{\pi\left[{x}\right]\right\}{dx}\:. \\ $$
Question Number 37804 Answers: 2 Comments: 1
Question Number 37796 Answers: 0 Comments: 0
$${Find}\:\frac{{dy}}{{dx}}\:{if}\: \\ $$$${y}=\:\left({x}^{\mathrm{2}} +\:\mathrm{1}\right)^{\mathrm{2}} \\ $$$${and}\:{y}=\:\left(\mathrm{1}−\mathrm{3}{x}^{\mathrm{2}} \right)^{\mathrm{5}} \\ $$
Question Number 37795 Answers: 1 Comments: 0
$${The}\:{side}\:{of}\:{a}\:{square}\:{is}\:{increasing} \\ $$$${at}\:{a}\:{rate}\:{of}\:\mathrm{0}.\mathrm{1}{cms}^{−\mathrm{1}} .\:{Find}\:{the} \\ $$$${rate}\:{of}\:{increase}\:{of}\:{the}\:{perimeter} \\ $$$${of}\:{the}\:{square}\:{when}\:{the}\:{length}\:{of} \\ $$$${side}\:{is}\:\mathrm{4}{cm}. \\ $$
Question Number 37784 Answers: 2 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{dx}}{\mathrm{2}{cosx}\:+{cos}\left(\mathrm{2}{x}\right)} \\ $$
Question Number 37777 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{curves}\:\mathrm{9}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} −\mathrm{30}{y}+\mathrm{16}=\mathrm{0}\:{and} \\ $$$${y}^{\mathrm{2}} ={x}^{\mathrm{3}} \:. \\ $$
Question Number 37768 Answers: 0 Comments: 4
$${quest}\:{for}\:{truth}...{then}\:{study}\:{the}\:{books}... \\ $$
Question Number 37755 Answers: 0 Comments: 1
Question Number 37754 Answers: 0 Comments: 0
Question Number 37751 Answers: 2 Comments: 8
Question Number 37750 Answers: 0 Comments: 1
$$\mathrm{Given}\:\mathrm{the}\:\mathrm{angle}\:{x},\:\mathrm{construct}\:\mathrm{the}\:\mathrm{angle}\:{y}\:\mathrm{if}\: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{sin}\:{y}\:=\:\mathrm{2}\:\mathrm{sin}\:{x} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{tan}\:{y}\:=\:\mathrm{3}\:\mathrm{tan}\:{x} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{cos}\:{y}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:{x}\: \\ $$$$\left(\mathrm{4}\right)\:\mathrm{sec}\:{y}\:=\:\mathrm{cosec}\:{x} \\ $$$$\mathrm{hey}\:\mathrm{do}\:\mathrm{not}\:\mathrm{construct}\:\mathrm{it}\:\mathrm{just}\:\mathrm{find}\:\mathrm{it}\:\mathrm{out}\:\mathrm{the}\:\angle{y}\: \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{every}\:\mathrm{given}\:\mathrm{cases} \\ $$
Question Number 37745 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{sec}^{\mathrm{2}} \theta\:=\:\frac{\mathrm{4}{xy}}{\left({x}+{y}\right)^{\mathrm{2}} }\:\mathrm{is}\: \\ $$$$\mathrm{only}\:\mathrm{possible}\:\mathrm{when}\:{x}\:=\:{y} \\ $$
Question Number 37738 Answers: 0 Comments: 4
$$\mathrm{given}\:{a}^{\mathrm{2}} <\mathrm{1} \\ $$$$\mathrm{now} \\ $$$${a}<\sqrt{\mathrm{1}} \\ $$$$\mathrm{or}\:{a}<\pm\mathrm{1} \\ $$$$\therefore\:{a}<\mathrm{1}\:\mathrm{and}\:{a}<−\mathrm{1}\:\:\:\:\mathrm{but}\:\mathrm{but}\:\mathrm{its}\:\mathrm{false}\:\mathrm{we}\:\mathrm{know} \\ $$$${if}\:\mathrm{a}^{\mathrm{2}} <\mathrm{1}\:\mathrm{so}\:−\mathrm{1}<{a}<\mathrm{1}\: \\ $$$${so}\:{my}\:{question}\:{is}\:{why}\:{this}\:{is}\:{happening}\:{at}\:{all}. \\ $$
Question Number 37733 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{sin}\:\theta\:=\:{x}\:+\:\frac{\mathrm{1}}{{x}}\: \\ $$$$\mathrm{is}\:\mathrm{impossible}\:\mathrm{if}\:{x}\:\mathrm{be}\:\mathrm{real}. \\ $$
Question Number 37730 Answers: 1 Comments: 1
$$\:{Differentiate}\: \\ $$$${x}\left(\mathrm{1}+{x}\right)^{\mathrm{4}} \: \\ $$$$ \\ $$
Question Number 37728 Answers: 1 Comments: 0
$$\mathrm{1}+\mathrm{n}+\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{2}!}+\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}−\mathrm{2}\right)}{\mathrm{3}!}+\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}−\mathrm{2}\right)\left(\mathrm{n}−\mathrm{3}\right)}{\mathrm{4}!}+........= \\ $$
Pg 1693 Pg 1694 Pg 1695 Pg 1696 Pg 1697 Pg 1698 Pg 1699 Pg 1700 Pg 1701 Pg 1702
Terms of Service
Privacy Policy
Contact: info@tinkutara.com