Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1698

Question Number 37845    Answers: 0   Comments: 0

Question Number 37840    Answers: 1   Comments: 0

f(θ,φ)=((cos φ[cos θ tan (((θ+φ)/2))−sin θ]^2 )/(cos φtan (((θ+φ)/2))+sin φ)) φ ∈ (0,(π/2)) , θ ∈ (−(π/2), (π/2)); find maximum f(θ,φ).

$${f}\left(\theta,\phi\right)=\frac{\mathrm{cos}\:\phi\left[\mathrm{cos}\:\theta\:\mathrm{tan}\:\left(\frac{\theta+\phi}{\mathrm{2}}\right)−\mathrm{sin}\:\theta\right]^{\mathrm{2}} }{\mathrm{cos}\:\phi\mathrm{tan}\:\left(\frac{\theta+\phi}{\mathrm{2}}\right)+\mathrm{sin}\:\phi} \\ $$$$\:\phi\:\in\:\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\:,\:\theta\:\in\:\left(−\frac{\pi}{\mathrm{2}},\:\frac{\pi}{\mathrm{2}}\right); \\ $$$${find}\:{maximum}\:{f}\left(\theta,\phi\right). \\ $$

Question Number 37838    Answers: 0   Comments: 5

let f(x)= e^(−2x) arctan(x^2 ) 1)calculate f^((n)) (x) 2) find f^((n)) (0) 3) developp f at integr serie

$${let}\:{f}\left({x}\right)=\:{e}^{−\mathrm{2}{x}} \:{arctan}\left({x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$

Question Number 37820    Answers: 1   Comments: 2

let f(x)= (x^2 /(1+x^4 )) 1) calculate f^((n)) (x) 2) find f^((n)) (0) 3) developp f at integr serie 4) calculate ∫_0 ^1 f(x)dx.

$${let}\:{f}\left({x}\right)=\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}. \\ $$

Question Number 37819    Answers: 0   Comments: 0

study the convergence of u_(n+1) =u_n + ln(1+e^(−u_n ) ) with u_0 =0

$${study}\:{the}\:{convergence}\:\:{of} \\ $$$${u}_{{n}+\mathrm{1}} ={u}_{{n}} \:+\:{ln}\left(\mathrm{1}+{e}^{−{u}_{{n}} } \right)\:\:{with}\:{u}_{\mathrm{0}} =\mathrm{0} \\ $$

Question Number 37818    Answers: 0   Comments: 1

let 0<u_0 <1 and u_(n+1) =(√((1+u_n )/2)) study the convergence of u_n

$${let}\:\mathrm{0}<{u}_{\mathrm{0}} <\mathrm{1}\:\:{and}\:{u}_{{n}+\mathrm{1}} =\sqrt{\frac{\mathrm{1}+{u}_{{n}} }{\mathrm{2}}} \\ $$$${study}\:{the}\:{convergence}\:{of}\:{u}_{{n}} \: \\ $$$$ \\ $$

Question Number 37817    Answers: 1   Comments: 1

calculate lim_(n→+∞) x^n (1−cos((π/x^n ))) with x from R and x≠0

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:{x}^{{n}} \left(\mathrm{1}−{cos}\left(\frac{\pi}{{x}^{{n}} }\right)\right)\:{with}\:{x} \\ $$$${from}\:{R}\:{and}\:{x}\neq\mathrm{0} \\ $$

Question Number 37816    Answers: 0   Comments: 1

find lim_(x→0) ((ln(x+e^(sinx) ) −x^2 )/(sh(2x)))

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{ln}\left({x}+{e}^{{sinx}} \right)\:−{x}^{\mathrm{2}} }{{sh}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 37815    Answers: 1   Comments: 1

let I = ∫_0 ^∞ e^(−x) cos^2 (π[x])dx and J = ∫_0 ^∞ e^(−x) sin^2 (π[x])dx 1) calculate I +J and I −J 2) find the values of I and J.

$${let}\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:{cos}^{\mathrm{2}} \left(\pi\left[{x}\right]\right){dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:{sin}^{\mathrm{2}} \left(\pi\left[{x}\right]\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:+{J}\:\:{and}\:{I}\:−{J} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:{I}\:{and}\:{J}. \\ $$

Question Number 37813    Answers: 1   Comments: 0

find A_n = ∫_(1/n) ^1 x(√x)arctan(x+(1/x))dx then calculate lim_(n→+∞) A_n .

$${find}\:{A}_{{n}} \:\:=\:\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \:\:{x}\sqrt{{x}}{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right){dx} \\ $$$${then}\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} . \\ $$

Question Number 37812    Answers: 1   Comments: 1

calculate ∫_0 ^∞ e^(−2x) sin{π[x]}dx .

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\mathrm{2}{x}} {sin}\left\{\pi\left[{x}\right]\right\}{dx}\:. \\ $$

Question Number 37804    Answers: 2   Comments: 1

Question Number 37796    Answers: 0   Comments: 0

Find (dy/dx) if y= (x^2 + 1)^2 and y= (1−3x^2 )^5

$${Find}\:\frac{{dy}}{{dx}}\:{if}\: \\ $$$${y}=\:\left({x}^{\mathrm{2}} +\:\mathrm{1}\right)^{\mathrm{2}} \\ $$$${and}\:{y}=\:\left(\mathrm{1}−\mathrm{3}{x}^{\mathrm{2}} \right)^{\mathrm{5}} \\ $$

Question Number 37795    Answers: 1   Comments: 0

The side of a square is increasing at a rate of 0.1cms^(−1) . Find the rate of increase of the perimeter of the square when the length of side is 4cm.

$${The}\:{side}\:{of}\:{a}\:{square}\:{is}\:{increasing} \\ $$$${at}\:{a}\:{rate}\:{of}\:\mathrm{0}.\mathrm{1}{cms}^{−\mathrm{1}} .\:{Find}\:{the} \\ $$$${rate}\:{of}\:{increase}\:{of}\:{the}\:{perimeter} \\ $$$${of}\:{the}\:{square}\:{when}\:{the}\:{length}\:{of} \\ $$$${side}\:{is}\:\mathrm{4}{cm}. \\ $$

Question Number 37784    Answers: 2   Comments: 1

find ∫_0 ^(π/4) (dx/(2cosx +cos(2x)))

$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{dx}}{\mathrm{2}{cosx}\:+{cos}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 37777    Answers: 2   Comments: 0

Find the shortest distance between the curves 9x^2 +9y^2 −30y+16=0 and y^2 =x^3 .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{curves}\:\mathrm{9}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} −\mathrm{30}{y}+\mathrm{16}=\mathrm{0}\:{and} \\ $$$${y}^{\mathrm{2}} ={x}^{\mathrm{3}} \:. \\ $$

Question Number 37768    Answers: 0   Comments: 4

quest for truth...then study the books...

$${quest}\:{for}\:{truth}...{then}\:{study}\:{the}\:{books}... \\ $$

Question Number 37755    Answers: 0   Comments: 1

Question Number 37754    Answers: 0   Comments: 0

Question Number 37751    Answers: 2   Comments: 8

Question Number 37750    Answers: 0   Comments: 1

Given the angle x, construct the angle y if (1) sin y = 2 sin x (2) tan y = 3 tan x (3) cos y = (1/2)cos x (4) sec y = cosec x hey do not construct it just find it out the ∠y for the every given cases

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{angle}\:{x},\:\mathrm{construct}\:\mathrm{the}\:\mathrm{angle}\:{y}\:\mathrm{if}\: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{sin}\:{y}\:=\:\mathrm{2}\:\mathrm{sin}\:{x} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{tan}\:{y}\:=\:\mathrm{3}\:\mathrm{tan}\:{x} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{cos}\:{y}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:{x}\: \\ $$$$\left(\mathrm{4}\right)\:\mathrm{sec}\:{y}\:=\:\mathrm{cosec}\:{x} \\ $$$$\mathrm{hey}\:\mathrm{do}\:\mathrm{not}\:\mathrm{construct}\:\mathrm{it}\:\mathrm{just}\:\mathrm{find}\:\mathrm{it}\:\mathrm{out}\:\mathrm{the}\:\angle{y}\: \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{every}\:\mathrm{given}\:\mathrm{cases} \\ $$

Question Number 37745    Answers: 1   Comments: 0

Show that the equation sec^2 θ = ((4xy)/((x+y)^2 )) is only possible when x = y

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{sec}^{\mathrm{2}} \theta\:=\:\frac{\mathrm{4}{xy}}{\left({x}+{y}\right)^{\mathrm{2}} }\:\mathrm{is}\: \\ $$$$\mathrm{only}\:\mathrm{possible}\:\mathrm{when}\:{x}\:=\:{y} \\ $$

Question Number 37738    Answers: 0   Comments: 4

given a^2 <1 now a<(√1) or a<±1 ∴ a<1 and a<−1 but but its false we know if a^2 <1 so −1<a<1 so my question is why this is happening at all.

$$\mathrm{given}\:{a}^{\mathrm{2}} <\mathrm{1} \\ $$$$\mathrm{now} \\ $$$${a}<\sqrt{\mathrm{1}} \\ $$$$\mathrm{or}\:{a}<\pm\mathrm{1} \\ $$$$\therefore\:{a}<\mathrm{1}\:\mathrm{and}\:{a}<−\mathrm{1}\:\:\:\:\mathrm{but}\:\mathrm{but}\:\mathrm{its}\:\mathrm{false}\:\mathrm{we}\:\mathrm{know} \\ $$$${if}\:\mathrm{a}^{\mathrm{2}} <\mathrm{1}\:\mathrm{so}\:−\mathrm{1}<{a}<\mathrm{1}\: \\ $$$${so}\:{my}\:{question}\:{is}\:{why}\:{this}\:{is}\:{happening}\:{at}\:{all}. \\ $$

Question Number 37733    Answers: 1   Comments: 0

Prove that the equation sin θ = x + (1/x) is impossible if x be real.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{sin}\:\theta\:=\:{x}\:+\:\frac{\mathrm{1}}{{x}}\: \\ $$$$\mathrm{is}\:\mathrm{impossible}\:\mathrm{if}\:{x}\:\mathrm{be}\:\mathrm{real}. \\ $$

Question Number 37730    Answers: 1   Comments: 1

Differentiate x(1+x)^4

$$\:{Differentiate}\: \\ $$$${x}\left(\mathrm{1}+{x}\right)^{\mathrm{4}} \: \\ $$$$ \\ $$

Question Number 37728    Answers: 1   Comments: 0

1+n+((n(n−1))/(2!))+((n(n−1)(n−2))/(3!))+((n(n−1)(n−2)(n−3))/(4!))+........=

$$\mathrm{1}+\mathrm{n}+\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{2}!}+\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}−\mathrm{2}\right)}{\mathrm{3}!}+\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}−\mathrm{2}\right)\left(\mathrm{n}−\mathrm{3}\right)}{\mathrm{4}!}+........= \\ $$

  Pg 1693      Pg 1694      Pg 1695      Pg 1696      Pg 1697      Pg 1698      Pg 1699      Pg 1700      Pg 1701      Pg 1702   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com