Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1698
Question Number 37342 Answers: 0 Comments: 2
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)}\:{x}^{{n}} \:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\mathrm{2}^{{n}} }\:. \\ $$
Question Number 37341 Answers: 0 Comments: 1
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{3}}{{n}^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 37339 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\:\:\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{1}\:+\mathrm{2}^{\mathrm{3}} \:+\mathrm{3}^{\mathrm{3}} \:+...+{n}^{\mathrm{3}} } \\ $$
Question Number 37338 Answers: 0 Comments: 1
$${calculate}\:\:{B}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{sh}^{{n}} {xdx}\:. \\ $$
Question Number 37337 Answers: 0 Comments: 1
$${calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ch}^{{n}} {xdx}\:. \\ $$
Question Number 37335 Answers: 0 Comments: 1
$${find}\:\int\:\:\:\:\:{x}\:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right){dx}\:. \\ $$
Question Number 37334 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:\sum_{{k}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{k}} }{{k}!}\:. \\ $$
Question Number 37333 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} } \\ $$$$\left.\mathrm{1}\right){study}\:{the}\:{convergence}\:{of}\:{this}\:{serie} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\:\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}=\mathrm{2}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{3}\right){prove}\:{that}\:\forall{x}\in\:\in{R}\:\:{f}^{'} \left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\sum_{{n}\geqslant\mathrm{1}} \frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 37324 Answers: 0 Comments: 3
Question Number 46453 Answers: 1 Comments: 6
Question Number 37317 Answers: 2 Comments: 4
$$\int\:\frac{\mathrm{acos}\:{x}+{b}}{\left({a}+{b}\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:=\:? \\ $$
Question Number 37316 Answers: 1 Comments: 0
$$\int\:\frac{{x}^{\mathrm{2}} }{\left({x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:=\:? \\ $$
Question Number 37310 Answers: 1 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)\left({x}^{\mathrm{2}} \:+\mathrm{9}\right)}\:. \\ $$
Question Number 37309 Answers: 1 Comments: 2
$${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dx}\:. \\ $$
Question Number 37307 Answers: 0 Comments: 1
$${calculate}\:\:\:\int_{\gamma} \:\:\:\:\frac{{dz}}{{z}}\:\:\:{with}\:\gamma\:=\left\{{z}\in{C}\:/\mid{z}\mid=\mathrm{1}\right\}\:. \\ $$
Question Number 37306 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{{ix}} \:\:\:\frac{{x}−{i}}{\left({x}+{i}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)}\:{dx}\:. \\ $$$$ \\ $$
Question Number 37304 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{5}+{e}^{{ix}} }{\left(\mathrm{3}+{e}^{{ix}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:. \\ $$
Question Number 37303 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\gamma} \:\:\:\:\:\:\frac{{dz}}{{z}^{\mathrm{3}} \:+\mathrm{8}}\:{in}\:{those}\:{cases} \\ $$$$\left.\mathrm{1}\right)\:\gamma\:=\left\{{z}\in{C}\:/\:\mid{z}\mid\:=\mathrm{1}\right\} \\ $$$$\left.\mathrm{2}\right)\:\gamma\:=\left\{{z}\in{C}\:/\:\mid{z}\mid\:=\mathrm{3}\right\} \\ $$
Question Number 37302 Answers: 0 Comments: 0
$${let}\:\gamma\:=\:\left\{{z}\in{C}\:/\:\mid{z}\mid\:=\mathrm{4}\right\}\: \\ $$$${calculate}\:\:\int_{\gamma} \:\:\:\:\:\frac{{dz}}{{z}\:{sinz}}\:{in}\:{the}\:{positif}\:{sens}. \\ $$
Question Number 37301 Answers: 0 Comments: 0
$${find}?{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\left(\mathrm{2}{x}+\mathrm{1}\right){e}^{−{x}^{\mathrm{2}} } }{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }\:{dx}\:. \\ $$
Question Number 37300 Answers: 0 Comments: 1
$${let}\:{f}\left({z}\right)=\frac{\left(\mathrm{1}−{z}^{\mathrm{2}} \right){e}^{\mathrm{2}{z}} }{{z}^{\mathrm{3}} } \\ $$$${calculate}\:{Res}\left({f},\:\mathrm{0}\right) \\ $$
Question Number 37299 Answers: 0 Comments: 1
$${calculate}\:\:\int_{{C}} \:\:\:\frac{\mathrm{9}\left({z}^{\mathrm{2}} \:+\mathrm{2}\right)}{{z}\left({z}+\mathrm{1}\right)^{\mathrm{3}} \left({z}−\mathrm{2}\right)}{dz}\:\:{with}\:\:{C}\:{is}\:{the} \\ $$$${circle}\:{C}\:=\left\{{z}\in{C}/\:\mid{z}\mid\:=\mathrm{3}\right\}\: \\ $$
Question Number 37298 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\gamma} \:\:\:\:\frac{{z}+\mathrm{1}}{{z}\left({z}−\mathrm{1}\right)\left({z}+\mathrm{2}\right)}{dz}\:\:{with}\:\gamma\:{is}\:{the} \\ $$$${circle}\:\gamma\:=\left\{{z}\in{C}/\:\:\mid{z}\mid\:=\frac{\mathrm{3}}{\mathrm{2}}\right\} \\ $$
Question Number 37297 Answers: 0 Comments: 1
$${calculate}\:\:\int_{{C}} \:\:\:\:\frac{{z}}{{z}^{\mathrm{2}} \:+\mathrm{1}}{dz}\:\:{with}\:{C}=\left\{{z}\in{C}/\mid{z}\mid=\frac{\mathrm{1}}{\mathrm{2}}\right\} \\ $$
Question Number 37296 Answers: 0 Comments: 1
$${solve}\:{sinz}\:=\mathrm{2}\:\:\:\:\:{zfromC} \\ $$$$ \\ $$
Question Number 37295 Answers: 0 Comments: 0
$${find}\:{the}\:{principal}\:{value}\:{of}\left\{\left(\mathrm{1}+{i}\right)^{\mathrm{1}−{i}} \right\}^{\mathrm{1}+{i}} . \\ $$
Pg 1693 Pg 1694 Pg 1695 Pg 1696 Pg 1697 Pg 1698 Pg 1699 Pg 1700 Pg 1701 Pg 1702
Terms of Service
Privacy Policy
Contact: info@tinkutara.com