Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1697

Question Number 38716    Answers: 1   Comments: 1

calculate ∫_2 ^5 (dx/((x +1−[x])^2 ))

$${calculate}\:\:\:\int_{\mathrm{2}} ^{\mathrm{5}} \:\:\:\:\:\frac{{dx}}{\left({x}\:+\mathrm{1}−\left[{x}\right]\right)^{\mathrm{2}} } \\ $$

Question Number 38714    Answers: 1   Comments: 1

calculate ∫_1 ^6 (((−1)^([x]) )/(1+x^2 [x]))dx

$${calculate}\:\:\:\int_{\mathrm{1}} ^{\mathrm{6}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{1}+{x}^{\mathrm{2}} \left[{x}\right]}{dx} \\ $$

Question Number 38707    Answers: 0   Comments: 3

Question Number 38706    Answers: 0   Comments: 4

let f(x)= ∫_0 ^(π/2) (dθ/(1+x e^(iθ) )) with ∣x∣<1 1) developp f(x) at integr serie 2) calculate f(x) 3) find the value of ∫_0 ^(π/2) (e^(iθ) /((1+x e^(iθ) )^2 )) 4) calculate ∫_0 ^(π/2) (dθ/(2 +e^(iθ) ))

$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{d}\theta}{\mathrm{1}+{x}\:{e}^{{i}\theta} }\:\:\:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{developp}\:{f}\left({x}\right)\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{e}^{{i}\theta} }{\left(\mathrm{1}+{x}\:{e}^{{i}\theta} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{d}\theta}{\mathrm{2}\:+{e}^{{i}\theta} } \\ $$

Question Number 38699    Answers: 1   Comments: 0

Question Number 38696    Answers: 1   Comments: 0

Question Number 38692    Answers: 1   Comments: 0

If f(x)=2x+1 g(x)=(√x)+3 h(x)=(1/2) then hog^2 of (2)=?

$${If}\:{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{1} \\ $$$${g}\left({x}\right)=\sqrt{{x}}+\mathrm{3} \\ $$$${h}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${then}\:{hog}^{\mathrm{2}} \:{of}\:\left(\mathrm{2}\right)=? \\ $$

Question Number 38675    Answers: 1   Comments: 3

Question Number 38679    Answers: 3   Comments: 0

Question Number 38651    Answers: 1   Comments: 0

If ∫_0 ^1 e^(−x^2 ) dx = a , then find the value of ∫_0 ^1 x^2 e^(−x^2 ) dx in terms of ′a′ ?

$$\mathrm{If}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−{x}^{\mathrm{2}} } {dx}\:=\:{a}\:,\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } {dx}\:{in}\:{terms}\:{of}\:'{a}'\:? \\ $$

Question Number 38643    Answers: 1   Comments: 4

calculate lim_(n→+∞) ((1+2+3+...+n)/(1+2^4 +3^4 +...+n^4 ))

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n}}{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+...+{n}^{\mathrm{4}} } \\ $$

Question Number 38642    Answers: 0   Comments: 3

calculate lim_(n→+∞) ((1 +2^2 +3^2 +....+n^2 )/(1+2^4 +3^4 +....+n^4 ))

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{\mathrm{1}\:+\mathrm{2}^{\mathrm{2}} \:+\mathrm{3}^{\mathrm{2}} \:+....+{n}^{\mathrm{2}} }{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+....+{n}^{\mathrm{4}} } \\ $$

Question Number 38641    Answers: 0   Comments: 1

calculate lim_(n→+∞) ((1+2^3 +3^3 +....+n^3 )/(1+2^4 +3^4 +...+n^4 )) .

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\frac{\mathrm{1}+\mathrm{2}^{\mathrm{3}} \:+\mathrm{3}^{\mathrm{3}} \:+....+{n}^{\mathrm{3}} }{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+...+{n}^{\mathrm{4}} }\:. \\ $$

Question Number 38640    Answers: 0   Comments: 1

calculate Σ_(k=1) ^n k^4 interms of n.

$${calculate}\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{4}} \:\:{interms}\:{of}\:{n}. \\ $$

Question Number 38636    Answers: 1   Comments: 0

Three variables u,v and w are related such that u varies directly as v and inversely as the square of w. If v increases by 15% and w decreased by 10%, find the percentage change in u.

$$\mathrm{Three}\:\mathrm{variables}\:\mathrm{u},\mathrm{v}\:\mathrm{and}\:\mathrm{w}\:\mathrm{are}\:\mathrm{related}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{u}\:\mathrm{varies}\:\mathrm{directly}\:\mathrm{as}\:\mathrm{v}\:\mathrm{and}\:\mathrm{inversely}\:\mathrm{as}\:\mathrm{the}\:\mathrm{square}\:\mathrm{of}\: \\ $$$$\mathrm{w}.\:\mathrm{If}\:\mathrm{v}\:\mathrm{increases}\:\mathrm{by}\:\mathrm{15\%}\:\mathrm{and}\:\mathrm{w}\:\mathrm{decreased}\:\mathrm{by}\:\mathrm{10\%}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{percentage}\:\mathrm{change}\:\mathrm{in}\:\mathrm{u}. \\ $$

Question Number 38618    Answers: 1   Comments: 2

Question Number 38613    Answers: 1   Comments: 0

The radius of the largest circle which passes through (1,2) and (3,4) and lies completely in the first quadrant is A) 3 B) 2 C) (√6) D) 2(√5) I got the answer as 2 but the answer given is 2(√5).

$$\mathrm{The}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{circle}\:\mathrm{which} \\ $$$$\mathrm{passes}\:\mathrm{through}\:\left(\mathrm{1},\mathrm{2}\right)\:\mathrm{and}\:\left(\mathrm{3},\mathrm{4}\right)\:\mathrm{and}\:\mathrm{lies} \\ $$$$\mathrm{completely}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{quadrant}\:\mathrm{is} \\ $$$$\left.\mathrm{A}\right)\:\mathrm{3} \\ $$$$\left.\mathrm{B}\right)\:\mathrm{2} \\ $$$$\left.\mathrm{C}\right)\:\sqrt{\mathrm{6}} \\ $$$$\left.\mathrm{D}\right)\:\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\mathrm{I}\:\mathrm{got}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{as}\:\mathrm{2}\:\mathrm{but}\:\mathrm{the}\:\mathrm{answer}\: \\ $$$$\mathrm{given}\:\mathrm{is}\:\mathrm{2}\sqrt{\mathrm{5}}. \\ $$

Question Number 39491    Answers: 0   Comments: 0

Question Number 38600    Answers: 3   Comments: 1

Question Number 38593    Answers: 1   Comments: 3

Question Number 38587    Answers: 2   Comments: 2

solve for x: e^x + e^x^2 + e^x^3 = 3 + x + x^2 + x^3

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\mathrm{e}^{\mathrm{x}} \:+\:\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \:+\:\mathrm{e}^{\mathrm{x}^{\mathrm{3}} } \:=\:\:\mathrm{3}\:+\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{3}} \\ $$

Question Number 38570    Answers: 0   Comments: 2

Question Number 38568    Answers: 0   Comments: 18

Find the area common to min{[x], [y] } =2 and max{[x], [y] } =4 . [x] denotes the greatest integer less than or equal to x.

$${Find}\:{the}\:{area}\:{common}\:{to} \\ $$$${min}\left\{\left[{x}\right],\:\left[{y}\right]\:\right\}\:=\mathrm{2}\:\:\:{and} \\ $$$${max}\left\{\left[{x}\right],\:\left[{y}\right]\:\right\}\:=\mathrm{4}\:. \\ $$$$\left[{x}\right]\:{denotes}\:{the}\:{greatest}\:{integer} \\ $$$${less}\:{than}\:{or}\:{equal}\:{to}\:{x}. \\ $$

Question Number 38562    Answers: 1   Comments: 0

((√2) +i)(1−(√(2i)) )

$$\left(\sqrt{\mathrm{2}}\:+{i}\right)\left(\mathrm{1}−\sqrt{\mathrm{2}{i}}\:\right) \\ $$

Question Number 38559    Answers: 1   Comments: 0

in a geometric series, the first term =a, common ratio=r. If S_n denotes the sum of the n terms and U_n =Σ_(n=1) ^n S_(n,) then rS_n +(1−r)U_(n ) equals to (a) 0 (b) n (c) na (d)nar

$${in}\:{a}\:{geometric}\:{series},\:{the}\:{first}\:{term} \\ $$$$={a},\:{common}\:{ratio}={r}.\:{If}\:{S}_{{n}} \:{denotes} \\ $$$${the}\:{sum}\:{of}\:{the}\:{n}\:{terms}\:{and}\:{U}_{{n}} =\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}{S}_{{n},} \\ $$$${then}\:{rS}_{{n}} +\left(\mathrm{1}−{r}\right){U}_{{n}\:\:} {equals}\:{to} \\ $$$$\left({a}\right)\:\:\mathrm{0}\:\:\:\:\:\:\left({b}\right)\:\:{n}\:\:\:\:\:\left({c}\right)\:\:\:\:{na}\:\:\:\:\left({d}\right){nar} \\ $$

Question Number 38557    Answers: 1   Comments: 0

prove that ((2 cos 2^n θ + 1)/(2 cos θ + 1)) = (2 cos θ − 1)(2 cos 2θ − 1)(2 cos 2^2 θ− 1) ...(2 cos 2^(n − 1) θ − 1)

$${prove}\:{that} \\ $$$$\frac{\mathrm{2}\:\mathrm{cos}\:\mathrm{2}^{{n}} \theta\:+\:\mathrm{1}}{\mathrm{2}\:\mathrm{cos}\:\theta\:+\:\mathrm{1}}\:=\:\left(\mathrm{2}\:\mathrm{cos}\:\theta\:−\:\mathrm{1}\right)\left(\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta\:−\:\mathrm{1}\right)\left(\mathrm{2}\:\mathrm{cos}\:\mathrm{2}^{\mathrm{2}} \theta−\:\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\left(\mathrm{2}\:\mathrm{cos}\:\mathrm{2}^{{n}\:−\:\mathrm{1}} \theta\:\:−\:\mathrm{1}\right) \\ $$

  Pg 1692      Pg 1693      Pg 1694      Pg 1695      Pg 1696      Pg 1697      Pg 1698      Pg 1699      Pg 1700      Pg 1701   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com