Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1697
Question Number 38535 Answers: 0 Comments: 0
$${Given}\:{the}\:{function} \\ $$$${f}\left({x}\right)\:{where}\: \\ $$$$ \\ $$$${f}\left({x}\right)=\:\begin{cases}{\int{x}^{\mathrm{2}} \:+\:\mathrm{1}\:,{for}\:\left\{{x}:{x}\:{D}\left({f}\right)\:\mathrm{2}\right.}\\{\int{x}^{\mathrm{3}} \:−\:\mathrm{1},{for}\:{y}\:=\:{f}'\left({x}\right)}\end{cases} \\ $$$$\left.{a}\right)\:{Evaluate}\:{f}\left(\mathrm{2}\right) \\ $$$${if}\:{f}\left({a}\right)=\:\mathrm{2}\:+\:{a}^{{n}−\mathrm{1}} \\ $$$${find}\:{the}\:{value}\:{of}\:{a} \\ $$$${hence}\:{the}\:{domain}\:{of}\:{f}\left({x}\right). \\ $$
Question Number 38534 Answers: 0 Comments: 0
$$\int\underset{{R}} {\int}\left(\mathrm{2}{x}\:+\:\mathrm{3}{y}\right)^{\mathrm{2}} \:{dA}=?? \\ $$
Question Number 38533 Answers: 2 Comments: 2
Question Number 38521 Answers: 0 Comments: 1
$${letf}\left({x}\right)\:=\:\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$$$\left(\right. \\ $$
Question Number 38520 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{3}{n}^{\mathrm{2}} \:+\mathrm{1}}{\left({n}−\mathrm{1}\right)^{\mathrm{3}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Question Number 38518 Answers: 0 Comments: 1
$${calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 38517 Answers: 2 Comments: 0
$${simlify} \\ $$$${A}=\:\frac{\mathrm{1}}{\left(\mathrm{2}−\sqrt{\mathrm{5}}\right)^{\mathrm{4}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{4}} } \\ $$$${B}\:=\:\frac{\mathrm{1}}{\left(\mathrm{3}−\sqrt{\mathrm{2}}\right)^{\mathrm{6}} }\:+\frac{\mathrm{1}}{\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)^{\mathrm{6}} } \\ $$
Question Number 38516 Answers: 3 Comments: 1
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mid\mathrm{sin}\:{x}\:−\:\mathrm{cos}\:{x}\mid\mathrm{d}{x} \\ $$
Question Number 38515 Answers: 1 Comments: 0
$$\:{Question}\:; \\ $$$${x}^{\mathrm{3}} \:+\:{x}^{\mathrm{3}} \:=\: \\ $$$$\left.{A}\right)\:{x}^{\mathrm{9}} \\ $$$$\left.{B}\right)\:{x}^{\mathrm{6}} \\ $$$$\left.{C}\right)\:{x}^{\mathrm{3}} \\ $$$$\left.{D}\right)\:\mathrm{1} \\ $$$${Give}\:{a}\:{reason}\:{for}\:{your}\:{answer}. \\ $$
Question Number 38492 Answers: 0 Comments: 1
Question Number 38495 Answers: 4 Comments: 0
$${prove}\:{that} \\ $$$$\boldsymbol{\mathrm{tan}}\:\mathrm{3}\boldsymbol{{a}}\:\boldsymbol{\mathrm{tan}}\:\mathrm{2}\boldsymbol{{a}}\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{{a}}\:=\:\:\boldsymbol{\mathrm{tan}}\:\mathrm{3}\boldsymbol{{a}}\:−\:\boldsymbol{\mathrm{tan}}\:\mathrm{2}\boldsymbol{{a}}\:−\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{{a}} \\ $$
Question Number 38488 Answers: 2 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{if}\: \\ $$$$\mathrm{3}^{{x}} \:=\:\mathrm{9}{x} \\ $$
Question Number 38478 Answers: 0 Comments: 1
Question Number 38477 Answers: 1 Comments: 0
Question Number 38475 Answers: 1 Comments: 0
$${A}\:{committee}\:{of}\:\mathrm{2}\:{girls}\:{and}\:\mathrm{3}{boys} \\ $$$${is}\:{to}\:{be}\:{form}\:{from}\:\mathrm{6}{girls}\:{and}\:\mathrm{8}{boys} \\ $$$${how}\:{many}\:{different}\:{committee}\:{can} \\ $$$${be}\:{formed} \\ $$$$? \\ $$
Question Number 38470 Answers: 0 Comments: 4
$${calculate}\:{f}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({tx}\right)}{\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cosx}}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 38469 Answers: 0 Comments: 1
$${calculate}\:\:{f}\left({a}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left({ax}\right)}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}{dx} \\ $$
Question Number 38468 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left(\mathrm{2}{x}\right){sh}\left(\mathrm{3}{x}\right)}{\mathrm{4}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 38467 Answers: 0 Comments: 1
$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{cos}\left({ax}\right){ch}\left({bx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:. \\ $$
Question Number 38466 Answers: 0 Comments: 1
$${let}\:{a}\:{from}\:{R}\:\:{find}\:{F}_{{a}} \left({t}\right)=\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({tx}\right)}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{F}_{\mathrm{2}} \left(\mathrm{3}\right)\:\:{and}\:{F}_{\mathrm{3}} \left(\mathrm{2}\right) \\ $$
Question Number 38465 Answers: 0 Comments: 2
$${find}\:\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xt}^{\mathrm{3}} \right){dt}\:{with}\:\mid{x}\mid<\mathrm{1}\:. \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+\mathrm{4}{t}^{\mathrm{3}} \right){dt}\:\:\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{t}^{\mathrm{3}} \right){dt}. \\ $$
Question Number 38464 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} {t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${find}\:\:{f}\left({x}\right)\:{at}\:{a}\:{simple}\:{form}\:. \\ $$
Question Number 38463 Answers: 0 Comments: 1
$${calculate}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\:\left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{4}}\right)}{{t}^{\mathrm{2}} }{dt}\: \\ $$
Question Number 38462 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{1}} ^{+\infty} {arctan}\left({x}\:−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$
Question Number 38461 Answers: 0 Comments: 0
$${find}\:\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:{arctan}\left(\mathrm{1}+{e}^{−{xt}} \right){dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\infty} \:\:{arctan}\left(\mathrm{1}+{e}^{−\mathrm{2}{t}} \right){dt}. \\ $$
Question Number 38453 Answers: 0 Comments: 4
$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}}\:{e}^{−{xt}} {dt}\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{asimple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}−{cos}\left(\pi{t}\right)}{{t}}\:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}−{cos}\left(\mathrm{3}{t}\right)}{{t}}\:{e}^{−\mathrm{2}{t}} {dt} \\ $$
Pg 1692 Pg 1693 Pg 1694 Pg 1695 Pg 1696 Pg 1697 Pg 1698 Pg 1699 Pg 1700 Pg 1701
Terms of Service
Privacy Policy
Contact: info@tinkutara.com