Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1697

Question Number 32737    Answers: 1   Comments: 0

let give 0≤x≤1 calculate ∫_0 ^∞ ((arctan((x/t)))/(1+t^2 )) dt

$${let}\:{give}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left(\frac{{x}}{{t}}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$

Question Number 32736    Answers: 0   Comments: 0

let o≤x≤1 find ∫_0 ^x ((lnt)/(t^2 −1))dt

$${let}\:{o}\leqslant{x}\leqslant\mathrm{1}\:\:{find}\:\int_{\mathrm{0}} ^{{x}} \:\frac{{lnt}}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}\: \\ $$

Question Number 32735    Answers: 0   Comments: 0

let give A_n =∫_0 ^1 (dt/(1+t^n )) 1) find l=lim_(n→∞) A_n 2)give a equivalent of A_n −l 3) find a equivalent of A_n

$${let}\:{give}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\mathrm{1}+{t}^{{n}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:{l}={lim}_{{n}\rightarrow\infty} \:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){give}\:{a}\:{equivalent}\:{of}\:{A}_{{n}} −{l} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{a}\:{equivalent}\:{of}\:{A}_{{n}} \\ $$

Question Number 32734    Answers: 1   Comments: 3

1) a≥0 calculate ∫_0 ^a ((n^2 −x^2 )/((n^2 +x^2 )^2 ))dx with n integr 2) find ∫_0 ^∞ ((n^2 −x^2 )/((n^2 +x^2 )^2 ))dx 3)calculate Σ_(n=1) ^∞ ∫_0 ^∞ ((n^2 −x^2 )/((n^2 +x^2 )^2 )) dx .

$$\left.\mathrm{1}\right)\:{a}\geqslant\mathrm{0}\:\:{calculate}\:\int_{\mathrm{0}} ^{{a}} \:\frac{{n}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:{with} \\ $$$${n}\:{integr} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{n}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right){calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{n}^{\mathrm{2}} \:−{x}^{\mathrm{2}} }{\left({n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:. \\ $$

Question Number 32733    Answers: 0   Comments: 0

prove that Σ_(n=0) ^∞ (1/((n!)^2 )) =(1/(2π)) ∫_0 ^(2π) e^(2cosx) dx .

$${prove}\:{that}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}!\right)^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:{e}^{\mathrm{2}{cosx}} {dx}\:. \\ $$

Question Number 32732    Answers: 0   Comments: 0

give ∫_0 ^1 (((lnx)^p )/(1−x)) dx at form of seriewith p≥2 .

$${give}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\left({lnx}\right)^{{p}} }{\mathrm{1}−{x}}\:{dx}\:{at}\:{form}\:{of}\:{seriewith} \\ $$$${p}\geqslant\mathrm{2}\:. \\ $$

Question Number 32731    Answers: 0   Comments: 0

1) prove that ∫_0 ^1 ((arctant)/t)dt=−∫_0 ^1 ((lnt)/(1+t^2 ))dt 2) find ∫_0 ^1 ((arctant)/t)dt at form of serie

$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctant}}{{t}}{dt}=−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{lnt}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctant}}{{t}}{dt}\:{at}\:{form}\:{of}\:{serie} \\ $$

Question Number 32729    Answers: 0   Comments: 0

find lim_(n→∞) ∫_0 ^n (cos((x/n)))^n^2 dx.

$${find}\:{lim}_{{n}\rightarrow\infty} \:\int_{\mathrm{0}} ^{{n}} \left({cos}\left(\frac{{x}}{{n}}\right)\right)^{{n}^{\mathrm{2}} } \:{dx}. \\ $$

Question Number 32724    Answers: 0   Comments: 0

let A_n = ∫_0 ^n (√(1+(1−(x/n))^n )) dt. find a rquivalent of A_n .

$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \sqrt{\mathrm{1}+\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} }\:{dt}. \\ $$$${find}\:{a}\:{rquivalent}\:{of}\:{A}_{{n}} . \\ $$

Question Number 32721    Answers: 0   Comments: 0

let x>0 and f(x)=∫_x ^(+∞) (e^(−t) /t)dt 1)calculate f^′ (x) 2) find lim_(x→+∞) xf(x) and lim_(x→0^+ ) xf(x).

$${let}\:{x}>\mathrm{0}\:{and}\:{f}\left({x}\right)=\int_{{x}} ^{+\infty} \:\:\frac{{e}^{−{t}} }{{t}}{dt} \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{x}\rightarrow+\infty} {xf}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } {xf}\left({x}\right). \\ $$

Question Number 32720    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) (dt/(1 +(t+2i)^2 )) .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dt}}{\mathrm{1}\:+\left({t}+\mathrm{2}{i}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 32719    Answers: 0   Comments: 0

cslculate ∫_0 ^∞ (t −[t])e^(−3t) dt .

$${cslculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\left({t}\:−\left[{t}\right]\right){e}^{−\mathrm{3}{t}} {dt}\:. \\ $$

Question Number 32718    Answers: 0   Comments: 0

find ∫_0 ^∞ arctan(2x) (e^(−tx) /x) dc with t>0 2) calculate ∫_0 ^∞ ((arctan(2x))/x) e^(−x) dx.

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:{arctan}\left(\mathrm{2}{x}\right)\:\frac{{e}^{−{tx}} }{{x}}\:{dc}\:{with}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}}\:{e}^{−{x}} \:{dx}. \\ $$

Question Number 32717    Answers: 0   Comments: 0

finf ∫_0 ^(+∞) (dx/(1+x^2 +x^4 ))

$${finf}\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} } \\ $$

Question Number 32716    Answers: 1   Comments: 0

find ∫_0 ^(2π) ((cos^2 x)/(1+3sin^2 x))dx .

$${find}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cos}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{3}{sin}^{\mathrm{2}} {x}}{dx}\:. \\ $$

Question Number 32715    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) (dt/((1+it)(1+it^2 ))) .

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{it}\right)\left(\mathrm{1}+{it}^{\mathrm{2}} \right)}\:\:. \\ $$

Question Number 32714    Answers: 0   Comments: 1

calculate ∫_1 ^(+∞) (dt/(t^2 (√(1+t^2 )))) .

$${calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:. \\ $$

Question Number 32713    Answers: 0   Comments: 1

A iniform rod of length 2a and weight W is smoothly pivoted to a fixed point at A. A load of weight 2W is attached to the end B. The rod is kept horizontally by a string attached to the midpoint D of the rod and to a point C vertically above A. If the length of the string is 2a, find, in terms of W, the tension in the string and the magnitude of the reaction at the pivot.

$$\mathrm{A}\:\mathrm{iniform}\:\mathrm{rod}\:\mathrm{of}\:\mathrm{length}\:\mathrm{2}{a}\:\mathrm{and}\:\mathrm{weight}\:{W} \\ $$$$\mathrm{is}\:\mathrm{smoothly}\:\mathrm{pivoted}\:\mathrm{to}\:\mathrm{a}\:\mathrm{fixed}\:\mathrm{point} \\ $$$$\mathrm{at}\:{A}.\:\mathrm{A}\:\mathrm{load}\:\mathrm{of}\:\mathrm{weight}\:\mathrm{2}{W}\:\mathrm{is}\:\mathrm{attached} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{end}\:{B}.\:\mathrm{The}\:\mathrm{rod}\:\mathrm{is}\:\mathrm{kept}\:\mathrm{horizontally} \\ $$$$\mathrm{by}\:\mathrm{a}\:\mathrm{string}\:\mathrm{attached}\:\mathrm{to}\:\mathrm{the}\:\mathrm{midpoint} \\ $$$${D}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rod}\:\mathrm{and}\:\mathrm{to}\:\mathrm{a}\:\mathrm{point}\:{C}\:\mathrm{vertically} \\ $$$$\mathrm{above}\:{A}.\: \\ $$$$\mathrm{If}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{string}\:\mathrm{is}\:\mathrm{2}{a},\:\mathrm{find}, \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{W},\:\mathrm{the}\:\mathrm{tension}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{string}\:\mathrm{and}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{reaction}\:\mathrm{at}\:\mathrm{the}\:\mathrm{pivot}. \\ $$

Question Number 32712    Answers: 0   Comments: 1

calculate ∫_0 ^(π/2) (dt/(1+a cos^2 t)) .

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{a}\:{cos}^{\mathrm{2}} {t}}\:. \\ $$

Question Number 32701    Answers: 1   Comments: 3

let give f(x)= (x/(√(x+1))) 1)calculate f^(−1) (x)) 2) calculate (f^(−1) )^′ (x) .

$${let}\:{give}\:{f}\left({x}\right)=\:\frac{{x}}{\sqrt{{x}+\mathrm{1}}} \\ $$$$\left.\mathrm{1}\left.\right){calculate}\:{f}^{−\mathrm{1}} \left({x}\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\left({f}^{−\mathrm{1}} \right)^{'} \left({x}\right)\:. \\ $$

Question Number 32723    Answers: 0   Comments: 0

find lim_(n→+∞) ∫_0 ^∞ e^(−t) sin^n t dt.

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} \:{sin}^{{n}} {t}\:{dt}. \\ $$

Question Number 32722    Answers: 0   Comments: 0

find ∫_0 ^∞ (dx/(1+x^3 )) .

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{3}} }\:. \\ $$

Question Number 32702    Answers: 0   Comments: 0

Question Number 32710    Answers: 1   Comments: 0

Question Number 32709    Answers: 1   Comments: 0

Question Number 32688    Answers: 1   Comments: 0

Evaluate 1) ∫_(−1) ^0 (x^2 + x 1) dx 2) ∫_1 ^5 (x −1+ (1/x^2 ))dx

$$\mathrm{Evaluate} \\ $$$$\left.\:\mathrm{1}\right)\:\int_{−\mathrm{1}} ^{\mathrm{0}} \left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}\:\mathrm{1}\right)\:\mathrm{dx} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{1}} ^{\mathrm{5}} \left(\mathrm{x}\:−\mathrm{1}+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)\mathrm{dx} \\ $$$$ \\ $$

  Pg 1692      Pg 1693      Pg 1694      Pg 1695      Pg 1696      Pg 1697      Pg 1698      Pg 1699      Pg 1700      Pg 1701   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com