Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1689

Question Number 36851    Answers: 1   Comments: 0

Question Number 36855    Answers: 1   Comments: 1

Question Number 36846    Answers: 1   Comments: 6

Question Number 36845    Answers: 0   Comments: 0

Question Number 36844    Answers: 1   Comments: 0

find the sum of 4 digit even numbers formed from the digit 1, 2, 3, 4

$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{4}\:\mathrm{digit}\:\mathrm{even}\:\mathrm{numbers}\:\mathrm{formed}\:\mathrm{from}\:\mathrm{the}\:\mathrm{digit}\:\:\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4} \\ $$

Question Number 36843    Answers: 1   Comments: 1

lim_(x→∞) (x^x^x^(.....) )

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left({x}^{{x}^{{x}^{.....} } } \right) \\ $$

Question Number 36837    Answers: 1   Comments: 1

Σ_(r=0) ^∞ 2^(4r−2)

$$\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{2}^{\mathrm{4}{r}−\mathrm{2}} \: \\ $$

Question Number 36828    Answers: 0   Comments: 7

Question Number 36821    Answers: 2   Comments: 1

>. 2sin((5π)/(12))sin(π/(12)) slove this.?

$$>.\:\mathrm{2}{sin}\frac{\mathrm{5}\pi}{\mathrm{12}}{sin}\frac{\pi}{\mathrm{12}}\:{slove}\:{this}.? \\ $$

Question Number 36820    Answers: 1   Comments: 1

find the value of Σ_(n=2) ^∞ (1/((n−1)^2 (n+1)^2 ))

$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$

Question Number 36819    Answers: 0   Comments: 1

find the value of the sum Σ_(n=1) ^∞ (1/((2n−1)^2 (2n+1)^2 ))

$${find}\:{the}\:{value}\:{of}\:{the}\:{sum}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 36818    Answers: 1   Comments: 1

find f(a) = ∫ (dx/(√(1−ax^2 ))) with a from R .

$${find}\:{f}\left({a}\right)\:=\:\int\:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}−{ax}^{\mathrm{2}} }}\:\:{with}\:{a}\:{from}\:{R}\:. \\ $$

Question Number 36814    Answers: 1   Comments: 0

now the way is clear, also try this one: ∫((cos x)/(sin^2 x (√(sin 2x))))dx

$$\mathrm{now}\:\mathrm{the}\:\mathrm{way}\:\mathrm{is}\:\mathrm{clear},\:\mathrm{also}\:\mathrm{try}\:\mathrm{this}\:\mathrm{one}: \\ $$$$\int\frac{\mathrm{cos}\:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}\:\sqrt{\mathrm{sin}\:\mathrm{2}{x}}}{dx} \\ $$

Question Number 36811    Answers: 1   Comments: 0

∫ ((sin x)/(cos^2 x. (√(cos 2x)))) dx= ?

$$\int\:\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:^{\mathrm{2}} {x}.\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}}\:{dx}=\:? \\ $$

Question Number 36801    Answers: 2   Comments: 0

∫ ((1+x^4 )/((1−x^4 )^(3/2) )) dx = A ∫ A = B Find B ? Assume integration of constant=0.

$$\int\:\frac{\mathrm{1}+{x}^{\mathrm{4}} }{\left(\mathrm{1}−{x}^{\mathrm{4}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:{dx}\:=\:{A}\: \\ $$$$\int\:\mathrm{A}\:=\:\mathrm{B} \\ $$$$\mathrm{Find}\:\mathrm{B}\:? \\ $$$$\mathrm{Assume}\:\mathrm{integration}\:\mathrm{of}\:\mathrm{constant}=\mathrm{0}. \\ $$

Question Number 36799    Answers: 1   Comments: 1

find ∫_0 ^∞ e^t ln(1+e^(−2t) )dt .

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{{t}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{t}} \right){dt}\:. \\ $$

Question Number 36784    Answers: 0   Comments: 0

Prove that Σ_(r=0) ^n r ((n),(r) )^2 = n (((2n − 1)),(( n − 1)) )

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{r}\:\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}^{\mathrm{2}} \:=\:{n}\:\begin{pmatrix}{\mathrm{2}{n}\:−\:\mathrm{1}}\\{\:\:{n}\:−\:\mathrm{1}}\end{pmatrix} \\ $$

Question Number 36771    Answers: 0   Comments: 3

i have a suggestion...pls request members of the forum to post four to five question so that we get time to solve them...there is flood of questions...so little time to see all post pls give comment if you agree wkth it...

$${i}\:{have}\:{a}\:{suggestion}...{pls}\:{request}\:{members} \\ $$$${of}\:{the}\:{forum}\:{to}\:{post}\:{four}\:{to}\:{five}\:{question} \\ $$$${so}\:{that}\:{we}\:{get}\:{time}\:{to}\:{solve}\:{them}...{there}\:{is}\: \\ $$$${flood}\:{of}\:{questions}...{so}\:{little}\:{time}\:{to}\:{see}\:{all}\:{post} \\ $$$${pls}\:{give}\:{comment}\:{if}\:{you}\:{agree}\:{wkth}\:{it}... \\ $$

Question Number 36762    Answers: 1   Comments: 2

find A_n = ∫_0 ^(π/4) (cosx +sinx)^n dx.

$${find}\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\left({cosx}\:+{sinx}\right)^{{n}} \:{dx}. \\ $$

Question Number 36755    Answers: 1   Comments: 4

let f(a) = ∫_0 ^1 e^t ln(1+ e^(−at) )dt with a≥0 1) find f(a) 2) calculate f^′ (a) 3) find the value of ∫_0 ^1 e^t ln(1+e^(−3t) )dt .

$${let}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{{t}} {ln}\left(\mathrm{1}+\:{e}^{−{at}} \right){dt}\:\:{with}\:{a}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({a}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{t}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{3}{t}} \right){dt}\:. \\ $$

Question Number 36754    Answers: 1   Comments: 1

calculate ∫_1 ^(+∞) (dx/(x^2 (√(4+x^2 )))) .

$${calculate}\:\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{4}+{x}^{\mathrm{2}} }}\:. \\ $$

Question Number 36753    Answers: 1   Comments: 2

find I_n = ∫_0 ^1 x^n arctan(x)dx .

$${find}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{x}^{{n}} \:{arctan}\left({x}\right){dx}\:. \\ $$

Question Number 36752    Answers: 1   Comments: 4

find ∫ (dx/(arcsinx(√(1−x^2 )))) .

$${find}\:\:\int\:\:\:\frac{{dx}}{{arcsinx}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:. \\ $$

Question Number 36751    Answers: 0   Comments: 0

let f(x)= Σ_(n=1) ^∞ x^n^2 with x∈]−1,1[ prove that f(x) ∼ ((√π)/(2(√(−ln(x))))) (x →1^− )

$$\left.{let}\:\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}^{\mathrm{2}} } \:\:\:{with}\:\:{x}\in\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$${prove}\:{that}\:\:{f}\left({x}\right)\:\sim\:\frac{\sqrt{\pi}}{\mathrm{2}\sqrt{−{ln}\left({x}\right)}}\:\left({x}\:\rightarrow\mathrm{1}^{−} \right) \\ $$

Question Number 36750    Answers: 0   Comments: 0

let f(t)=Σ_(n≥1) (−1)^n ln{1+ (t^2 /(n(1+t^2 )))} 1) study the simple and uniform convergence of Σ f_n 2)study the continuity of f 3) prove that lim_(t→+∞) f(t)=ln((2/π)) .

$${let}\:{f}\left({t}\right)=\sum_{{n}\geqslant\mathrm{1}} \:\left(−\mathrm{1}\right)^{{n}} {ln}\left\{\mathrm{1}+\:\frac{{t}^{\mathrm{2}} }{{n}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\right\} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{simple}\:\:{and}\:{uniform}\:{convergence} \\ $$$${of}\:\Sigma\:{f}_{{n}} \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{continuity}\:{of}\:{f} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:{lim}_{{t}\rightarrow+\infty} \:{f}\left({t}\right)={ln}\left(\frac{\mathrm{2}}{\pi}\right)\:. \\ $$

Question Number 36748    Answers: 0   Comments: 0

let f(x)= Σ_(n=1) ^∞ (((−1)^(n−1) )/(ln(nx))) 1) give D_f and study f on]1,+∞[ 2)study the continjity of f and calculate lim _(x→1) f(x) and lim_(x→+∞) f(x). 3) prove that f is C^1 on ]1,+∞[ .

$${let}\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{ln}\left({nx}\right)} \\ $$$$\left.\mathrm{1}\left.\right)\:{give}\:{D}_{{f}} \:\:{and}\:{study}\:{f}\:{on}\right]\mathrm{1},+\infty\left[\right. \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{continjity}\:{of}\:{f}\:{and}\:{calculate} \\ $$$${lim}\:_{{x}\rightarrow\mathrm{1}} {f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right). \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:{f}\:{is}\:{C}^{\mathrm{1}} \:{on}\:\right]\mathrm{1},+\infty\left[\:.\right. \\ $$

  Pg 1684      Pg 1685      Pg 1686      Pg 1687      Pg 1688      Pg 1689      Pg 1690      Pg 1691      Pg 1692      Pg 1693   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com