Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1689
Question Number 34283 Answers: 0 Comments: 2
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{dx}}{{cos}^{\mathrm{4}} {x}\:+{sin}^{\mathrm{4}} {x}} \\ $$
Question Number 34282 Answers: 0 Comments: 1
$${find}\:\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\:\:\frac{{dx}}{{cos}\left({x}\right)\:{sin}\left({x}\right)} \\ $$
Question Number 34281 Answers: 0 Comments: 0
$${calculate}\:\:\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \:\:\:\:\:\:\frac{{x}−\mathrm{1}}{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx}\: \\ $$
Question Number 34280 Answers: 0 Comments: 0
$${find}\:\:\:\:\int\:\:\:\frac{{ln}\left({x}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 34279 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{{x}}\:{dx}\:. \\ $$
Question Number 34278 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{2}\:\:+\left({t}+\mathrm{3}\right){ln}\left(\frac{{t}+\mathrm{2}}{{t}+\mathrm{4}}\right)\right){dt}\:. \\ $$
Question Number 34277 Answers: 0 Comments: 1
$${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)....\left({x}+{n}\right)} \\ $$$${n}\:{integr}\geqslant\mathrm{2}\:. \\ $$
Question Number 34276 Answers: 0 Comments: 0
$${nature}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{3}} {sin}^{\mathrm{2}} {x}}\:? \\ $$
Question Number 34275 Answers: 0 Comments: 0
$${nature}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({e}^{{x}} \right){dx}? \\ $$
Question Number 34274 Answers: 0 Comments: 0
$${calculate}\:\:\int_{\mathrm{2}} ^{+\infty} \:\:\frac{\mathrm{4}{x}}{{x}^{\mathrm{4}} −\mathrm{1}}{dx}\:. \\ $$
Question Number 34273 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{e}^{{arctanx}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 34271 Answers: 0 Comments: 0
$${find}\:{lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({nx}\right)}{{n}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$
Question Number 34270 Answers: 0 Comments: 0
$${let}\:{give}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{for}\:{n}\geqslant\mathrm{2}\:{find}\:{a}\:{relation}\:{between}\:{A}_{{n}+\mathrm{1}} \:{and}\:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:{A}_{{n}} . \\ $$
Question Number 34269 Answers: 0 Comments: 0
$${calculate}\:{I}\left(\lambda\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\lambda} \right)} \\ $$
Question Number 34268 Answers: 0 Comments: 0
$${calculate}\:{I}\:=\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{sinx}\right){dx} \\ $$
Question Number 34267 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{e}^{{x}} \right)\left(\mathrm{1}+{e}^{−{x}} \right)}\:. \\ $$
Question Number 34266 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{find}\:{the}\:{relation}\:{between}\:\int_{{x}} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:\:{and} \\ $$$$\int_{{x}} ^{+\infty} \:\:\:\frac{{e}^{−{t}^{\mathrm{2}} } }{{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{2}\right)\:{guive}\:{a}\:{equivalent}\:{to}\:\int_{{x}} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:{when}\:{x}\rightarrow+\infty \\ $$
Question Number 34265 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\mathrm{2}{t}} \:{sin}\left(\left[{t}\right]\right)\:{dt}\:\:. \\ $$
Question Number 34264 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\mathrm{2}\left[{t}\right]} {sint}\:{dt} \\ $$
Question Number 34263 Answers: 0 Comments: 0
$${calculate}\:{I}\:\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{{n}} \right)}\:\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{x}^{{n}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{{n}} \right)}{dx}\:{with}\:{n}\:{integr}\:>\mathrm{0} \\ $$
Question Number 34262 Answers: 0 Comments: 0
$${find}\:{the}\:{nature}\:{of}\:\int_{\mathrm{2}} ^{+\infty} \left(\sqrt{\mathrm{1}+{t}^{\mathrm{2}} +{t}^{\mathrm{4}} \:}\:\:−{t}\:\:^{\mathrm{3}} \sqrt{{t}^{\mathrm{3}} +{at}}\right){dt} \\ $$$${a}\in{R}\:. \\ $$
Question Number 34261 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{t}−{sint}}{{t}^{{a}} }{dt}\:{with}\:{a}\:{real}. \\ $$
Question Number 34260 Answers: 0 Comments: 0
$${let}\:{give}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:{F}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{lnt}}{{t}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{G}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{aln}\left({t}\right)}{\left({t}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({t}\right)}{\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dt} \\ $$
Question Number 34258 Answers: 0 Comments: 1
$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:\forall\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\:\mathrm{1}−\frac{\mathrm{1}}{{x}}\leqslant{lnx}\leqslant\:{x}−\mathrm{1}\right. \\ $$$$\left.\mathrm{2}\right)\:{find}\:\mathrm{2}\:{sequences}\:{u}_{{n}} \:{and}\:{v}_{{n}} \:\:\:/ \\ $$$${u}_{{n}} \leqslant\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{ln}\left(\frac{{k}}{{n}}\right)\leqslant{v}_{{n}} \:\:\:\:\forall{n}\geqslant\mathrm{2} \\ $$
Question Number 34257 Answers: 0 Comments: 0
$${find}\:{f}\left({x}\right)=\:\int_{\mathrm{1}} ^{{x}} \:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}\:=\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }} \\ $$
Question Number 34255 Answers: 0 Comments: 0
$${find}\:\:{g}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }\:{dt} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+\mathrm{3}{t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt}\:. \\ $$
Pg 1684 Pg 1685 Pg 1686 Pg 1687 Pg 1688 Pg 1689 Pg 1690 Pg 1691 Pg 1692 Pg 1693
Terms of Service
Privacy Policy
Contact: info@tinkutara.com