Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1689

Question Number 33333    Answers: 0   Comments: 0

let hive I_n = ∫_0 ^(π/2) (sinx)^n dx prove that I_n ∼ (√(π/(2n))) (n→∞)

$${let}\:{hive}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({sinx}\right)^{{n}} \:{dx} \\ $$$${prove}\:{that}\:\:{I}_{{n}} \:\sim\:\:\sqrt{\frac{\pi}{\mathrm{2}{n}}}\:\left({n}\rightarrow\infty\right) \\ $$$$ \\ $$

Question Number 33334    Answers: 0   Comments: 3

decompose F(x)= (x^2 /(x^4 −1)) imside R(x) 2) find the value of ∫_2 ^(+∞) (x^2 /(x^4 −1)) .

$${decompose}\:{F}\left({x}\right)=\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:−\mathrm{1}}\:{imside}\:{R}\left({x}\right)\: \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\:\int_{\mathrm{2}} ^{+\infty} \:\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:−\mathrm{1}}\:\:. \\ $$

Question Number 33331    Answers: 0   Comments: 1

calcilate ∫_0 ^1 (dx/((1+x^2 )^3 ))

$${calcilate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$

Question Number 33330    Answers: 2   Comments: 0

Question Number 33329    Answers: 0   Comments: 1

find ∫ (dx/(√(4x−x^2 ))) .

$${find}\:\:\int\:\:\:\frac{{dx}}{\sqrt{\mathrm{4}{x}−{x}^{\mathrm{2}} }}\:. \\ $$

Question Number 33328    Answers: 0   Comments: 1

find ∫_(π/4) ^(4/π) (1+(1/x^2 ))arctanx dx

$${find}\:\:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\mathrm{4}}{\pi}} \:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){arctanx}\:{dx} \\ $$

Question Number 33327    Answers: 0   Comments: 1

find ∫_0 ^1 (dx/(3 +e^(−x) ))

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{3}\:+{e}^{−{x}} } \\ $$

Question Number 33323    Answers: 0   Comments: 1

Question related to Q#33217 If A_1 ,A_2 ,...A_n are n points with integer coordinates of a plane such that every triangle whose vertices are any three of the above points has its centroid with at least one non-integer coordinate. Find the maximum possible n. Recall that if P(x_1 ,y_1 ),Q(x_2 ,y_2 ),R(x_3 ,y_3 ) are three vertices then centroid G is (((x_1 +x_2 +x_3 )/3) , ((y_1 +y_2 +y_3 )/3))

$$\mathrm{Question}\:\mathrm{related}\:\mathrm{to}\:\mathrm{Q}#\mathrm{33217} \\ $$$$\mathrm{If}\:\mathrm{A}_{\mathrm{1}} ,\mathrm{A}_{\mathrm{2}} ,...\mathrm{A}_{\mathrm{n}} \:\mathrm{are}\:\mathrm{n}\:\mathrm{points}\:\mathrm{with}\:\mathrm{integer} \\ $$$$\mathrm{coordinates}\:\mathrm{of}\:\mathrm{a}\:\mathrm{plane}\:\mathrm{such}\:\mathrm{that}\:\mathrm{every}\:\mathrm{triangle} \\ $$$$\mathrm{whose}\:\mathrm{vertices}\:\mathrm{are}\:\mathrm{any}\:\mathrm{three}\:\mathrm{of}\:\mathrm{the}\:\mathrm{above} \\ $$$$\mathrm{points}\:\mathrm{has}\:\mathrm{its}\:\mathrm{centroid}\:\mathrm{with}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one} \\ $$$$\mathrm{non}-\mathrm{integer}\:\mathrm{coordinate}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{possible}\:\mathrm{n}.\:\:\: \\ $$$$\mathrm{Recall}\:\mathrm{that}\:\mathrm{if}\:\mathrm{P}\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{y}_{\mathrm{1}} \right),\mathrm{Q}\left(\mathrm{x}_{\mathrm{2}} ,\mathrm{y}_{\mathrm{2}} \right),\mathrm{R}\left(\mathrm{x}_{\mathrm{3}} ,\mathrm{y}_{\mathrm{3}} \right) \\ $$$$\mathrm{are}\:\mathrm{three}\:\mathrm{vertices}\:\mathrm{then}\:\mathrm{centroid}\:\mathrm{G}\:\mathrm{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\frac{\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} +\mathrm{x}_{\mathrm{3}} }{\mathrm{3}}\:,\:\frac{\mathrm{y}_{\mathrm{1}} +\mathrm{y}_{\mathrm{2}} +\mathrm{y}_{\mathrm{3}} }{\mathrm{3}}\right) \\ $$

Question Number 33322    Answers: 0   Comments: 4

a) px^2 + 3x + q=0 has roots [((α+β)/(αβ))]× αβ find p and q if x^2 − 7x + 4 = 0 with real and distinct roots has same roots.. b)if α and β are roots of x^2 + kx +2k+8=0. a) find k if one root is twice the other.

$$\left.{a}\right)\:{px}^{\mathrm{2}} +\:\mathrm{3}{x}\:+\:{q}=\mathrm{0}\:{has}\:{roots}\: \\ $$$$\:\:\left[\frac{\alpha+\beta}{\alpha\beta}\right]×\:\alpha\beta \\ $$$${find}\:{p}\:{and}\:{q}\:{if}\: \\ $$$$\:\:{x}^{\mathrm{2}} −\:\mathrm{7}{x}\:+\:\mathrm{4}\:=\:\mathrm{0}\:{with}\:{real}\:{and}\: \\ $$$${distinct}\:{roots}\:{has}\:{same}\:{roots}.. \\ $$$$\left.{b}\right){if}\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\: \\ $$$$\:{x}^{\mathrm{2}} +\:{kx}\:+\mathrm{2}{k}+\mathrm{8}=\mathrm{0}. \\ $$$$\left.{a}\right)\:{find}\:{k}\:{if}\:{one}\:{root}\:{is}\:{twice}\:{the}\:{other}. \\ $$

Question Number 33317    Answers: 1   Comments: 0

find the radius of a circle wich inscribes an equalateral triangle with perimeter of 24cm

$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{radius}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{circle}} \\ $$$$\boldsymbol{\mathrm{wich}}\:\boldsymbol{\mathrm{inscribes}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{equalateral}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{perimeter}}\:\boldsymbol{\mathrm{of}}\:\mathrm{24}\boldsymbol{\mathrm{cm}} \\ $$

Question Number 33316    Answers: 1   Comments: 0

If ((f(2x+2y))/(f(2x−2y))) = ((sin (x+y))/(sin (x−y))) . Then find f(x) ?

$${If}\:\:\frac{{f}\left(\mathrm{2}{x}+\mathrm{2}{y}\right)}{{f}\left(\mathrm{2}{x}−\mathrm{2}{y}\right)}\:=\:\frac{\mathrm{sin}\:\left({x}+{y}\right)}{\mathrm{sin}\:\left({x}−{y}\right)}\:. \\ $$$${Then}\:{find}\:{f}\left({x}\right)\:? \\ $$

Question Number 33313    Answers: 0   Comments: 1

find lim_(x→0) ((ln(1+sinx) −sin(ln(1+x)))/x^2 )

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{ln}\left(\mathrm{1}+{sinx}\right)\:−{sin}\left({ln}\left(\mathrm{1}+{x}\right)\right)}{{x}^{\mathrm{2}} } \\ $$

Question Number 33312    Answers: 1   Comments: 0

calculate lim_(x→0) ((e^(−3x^2 ) −1)/x^2 ) .

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{e}^{−\mathrm{3}{x}^{\mathrm{2}} } \:−\mathrm{1}}{{x}^{\mathrm{2}} }\:. \\ $$

Question Number 33311    Answers: 0   Comments: 0

let f(x) =∣sinx∣ (2π periodic even) developp f at fourier serie

$${let}\:\:{f}\left({x}\right)\:=\mid{sinx}\mid\:\:\left(\mathrm{2}\pi\:{periodic}\:{even}\right) \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$

Question Number 33310    Answers: 0   Comments: 0

let consider the 2π periodic?function f(x) =e^x 1) developp f at fourier serie 2) find the value of Σ_(n=0) ^∞ (((−1)^n )/(n^2 +1))

$${let}\:{consider}\:{the}\:\mathrm{2}\pi\:{periodic}?{function}\:\:{f}\left({x}\right)\:={e}^{{x}} \\ $$$$\left.\mathrm{1}\right)\:{developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \:+\mathrm{1}} \\ $$

Question Number 33308    Answers: 0   Comments: 0

calculate Σ_(n=0) ^∞ ln(cos((α/2^n ))) .

$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{ln}\left({cos}\left(\frac{\alpha}{\mathrm{2}^{{n}} }\right)\right)\:. \\ $$

Question Number 33307    Answers: 0   Comments: 0

let z=x+iy with x≠0 prove?that ∣ ((e^z −1)/z) ∣≤∣ ((e^x −1)/x) ∣

$${let}\:{z}={x}+{iy}\:\:{with}\:{x}\neq\mathrm{0}\:{prove}?{that} \\ $$$$\mid\:\frac{{e}^{{z}} \:−\mathrm{1}}{{z}}\:\mid\leqslant\mid\:\frac{{e}^{{x}} \:−\mathrm{1}}{{x}}\:\mid \\ $$

Question Number 33306    Answers: 0   Comments: 0

find Σ_(n=1) ^∞ ln( 1+(1/n^2 )) .

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{ln}\left(\:\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\:. \\ $$

Question Number 33305    Answers: 0   Comments: 2

find Σ_(n=2) ^∞ (1 −(1/n^2 ))

$${find}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\left(\mathrm{1}\:−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right) \\ $$

Question Number 33304    Answers: 0   Comments: 1

find Σ_(n=1) ^∞ ln( 1+(1/n))

$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{ln}\left(\:\mathrm{1}+\frac{\mathrm{1}}{{n}}\right) \\ $$

Question Number 33302    Answers: 0   Comments: 0

developp at integr serie f(x) = (1/(1+x −2x^3 ))

$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+{x}\:−\mathrm{2}{x}^{\mathrm{3}} } \\ $$

Question Number 33301    Answers: 0   Comments: 0

calculate Σ_(n=0) ^∞ ((cos(πnx))/2^n ) and Σ_(n=0) ^∞ ((sin(πnx))/2^n )

$${calculate}\:\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\pi{nx}\right)}{\mathrm{2}^{{n}} }\:\:{and}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left(\pi{nx}\right)}{\mathrm{2}^{{n}} } \\ $$

Question Number 33300    Answers: 0   Comments: 0

find the value of Σ_(n=0) ^∞ (((−1)^n )/(4n +3)) .

$${find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}\:+\mathrm{3}}\:. \\ $$

Question Number 33299    Answers: 0   Comments: 0

find the sum of Σ_(n=0) ^∞ ((n^2 +1)/(n+1)) x^(n )

$${find}\:{the}\:{sum}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{n}^{\mathrm{2}} \:+\mathrm{1}}{{n}+\mathrm{1}}\:{x}^{{n}\:} \\ $$

Question Number 33297    Answers: 0   Comments: 0

find ∫_0 ^(π/2) ln(1+x sinθ)dθ with 0<x<1 2) calculate ∫_0 ^(π/2) ln(1+(1/2)sinθ)dθ

$${find}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\mathrm{1}+{x}\:{sin}\theta\right){d}\theta\:\:\:{with}\:\:\mathrm{0}<{x}<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{sin}\theta\right){d}\theta \\ $$

Question Number 33295    Answers: 0   Comments: 0

let f(x)= (x+1^ )^(2n) e^(−nx) with n integr 1) calculste f^((p)) (x) and f^((n)) (x) 2) find f^((p)) (0) 3) developp f(x) at integr serie.

$${let}\:\:{f}\left({x}\right)=\:\left({x}+\mathrm{1}^{} \right)^{\mathrm{2}{n}} \:\:{e}^{−{nx}} \:\:{with}\:{n}\:{integr} \\ $$$$\left.\mathrm{1}\right)\:\:{calculste}\:\:{f}^{\left({p}\right)} \left({x}\right)\:\:{and}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({p}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\left({x}\right)\:{at}\:{integr}\:{serie}. \\ $$

  Pg 1684      Pg 1685      Pg 1686      Pg 1687      Pg 1688      Pg 1689      Pg 1690      Pg 1691      Pg 1692      Pg 1693   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com