Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1689
Question Number 38892 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\left(\mathrm{1}+\:{a}\:\mathrm{cos}\:{x}\right)−{b}\:\mathrm{sin}\:{x}}{{x}^{\mathrm{5}} }=\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:{a}\:\mathrm{and}\:{b} \\ $$
Question Number 38881 Answers: 1 Comments: 0
$${solve}\:{for}\:\mathrm{0}\:\leqslant\:\theta\:\leqslant\pi,\:{the}\:{equations} \\ $$$$\left.{a}\right)_{} \:\mathrm{cos}\:\left(\mathrm{2}\theta\:−\:\frac{\pi}{\mathrm{2}}\right)=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.{b}\right)\:\mathrm{cos}\:\theta\:−\:\sqrt{\mathrm{3}}\:{sin}\:\theta\:=\:\mathrm{0} \\ $$
Question Number 38880 Answers: 1 Comments: 0
$${Find}\:{the}\:{equation}\:{of}\:{the}\:{perpendicular} \\ $$$${bisector}\:{of}\:{the}\:{line}\:{segment}\:{joining} \\ $$$${the}\:{points}\:\left(\mathrm{1},\mathrm{3}\right)\:{and}\:\left(\mathrm{5},\mathrm{1}\right) \\ $$
Question Number 38879 Answers: 1 Comments: 0
$${Find}\:{the}\:{equation}\:{of}\:{the}\:{line}\:{through} \\ $$$$\left(\mathrm{2},−\mathrm{3}\right)\:{which}\:{make}\:{angles}\:\mathrm{45}°\:{with} \\ $$$${the}\:{line}\:\mathrm{2}{x}\:−\:{y}\:=\:\mathrm{2}. \\ $$
Question Number 38878 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{on}\:\mathrm{a}\:\mathrm{line}\:\mathrm{joining} \\ $$$$\mathrm{the}\:\mathrm{points}\:\mathrm{A}\left(\mathrm{2}{x},\mathrm{4}\right),{B}\left({x},\mathrm{3}\right)\:{and}\: \\ $$$${C}\left(\mathrm{4},\mathrm{3}\right) \\ $$
Question Number 38924 Answers: 1 Comments: 0
$${A}\:{wave}\:{has}\:{a}\:{wavelength}\:{of}\:\mathrm{1}.\mathrm{5}{m}, \\ $$$${calculate}\:{the}\:{phase}\:{angle}\:{between} \\ $$$${a}\:{point}\:\mathrm{0}.\mathrm{25}{m}\:{from}\:{the}\:{peak}\:{of}\:{the} \\ $$$${wave}\:{and}\:{another}\:{point}\:\mathrm{1}{m}\:{further} \\ $$$${along}\:{the}\:{same}\:{peak}. \\ $$
Question Number 38876 Answers: 1 Comments: 2
$$\mathrm{solve}:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:\:+\:\:\mathrm{2x}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:+\:\mathrm{5y}\:=\:\mathrm{0} \\ $$
Question Number 38870 Answers: 0 Comments: 0
$${i}\:{am}\:{posting}\:{what}\:{i}\:{think}\:{helpful}... \\ $$
Question Number 38865 Answers: 0 Comments: 0
Question Number 38864 Answers: 0 Comments: 0
Question Number 38863 Answers: 0 Comments: 0
Question Number 38862 Answers: 0 Comments: 0
Question Number 38861 Answers: 0 Comments: 0
Question Number 38860 Answers: 0 Comments: 0
Question Number 38859 Answers: 0 Comments: 0
Question Number 38858 Answers: 0 Comments: 0
Question Number 38857 Answers: 0 Comments: 0
Question Number 38856 Answers: 0 Comments: 0
Question Number 38855 Answers: 0 Comments: 0
Question Number 38854 Answers: 0 Comments: 0
Question Number 38853 Answers: 0 Comments: 1
Question Number 39030 Answers: 2 Comments: 3
$$\left.\mathrm{1}\right)\:{let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{4}} }\:\:{with}\:{x}\:>\mathrm{0} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dt}}{\mathrm{1}+\mathrm{3}{t}^{\mathrm{4}} } \\ $$
Question Number 38849 Answers: 1 Comments: 1
Question Number 38847 Answers: 0 Comments: 0
Question Number 38836 Answers: 0 Comments: 0
Question Number 38825 Answers: 1 Comments: 4
Pg 1684 Pg 1685 Pg 1686 Pg 1687 Pg 1688 Pg 1689 Pg 1690 Pg 1691 Pg 1692 Pg 1693
Terms of Service
Privacy Policy
Contact: info@tinkutara.com