Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1688
Question Number 39520 Answers: 1 Comments: 1
$${if}\:\left(\mathrm{1}+{x}\right)^{{n}} \:=\sum_{{i}=\mathrm{0}} ^{{n}} \:{a}_{{i}} {x}^{{i}} \:\:\:\:{and} \\ $$$$\left(\mathrm{1}+{x}\right)^{{n}+\mathrm{1}} \:=\sum_{{i}=\mathrm{0}} ^{{n}+\mathrm{1}} \:{b}_{{i}} \:{x}^{{i}} \:\:{calculate} \\ $$$$\frac{\coprod_{{i}=\mathrm{0}} ^{{n}} \:{a}_{{i}} }{\prod_{{i}=\mathrm{0}} ^{{n}+\mathrm{1}} \:{b}_{{i}} }\:. \\ $$
Question Number 39519 Answers: 1 Comments: 1
$${simplify}\: \\ $$$$\left.\mathrm{1}\right)\:{A}_{{n}} =\frac{\mathrm{1}}{\sqrt{{a}}}\left\{\:\left(\frac{\mathrm{1}+\sqrt{{a}}}{\mathrm{2}}\:\right)^{{n}} \:−\left(\frac{\mathrm{1}−\sqrt{{a}}}{\mathrm{2}}\right)^{{n}} \right\}\:{with}\:{n}\:{natural}\: \\ $$$${integr}\:{and}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}{x}+\mathrm{1}}}\left\{\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{2}{x}+\mathrm{1}}}{\mathrm{2}}\right)^{{n}} \:−\left(\frac{\mathrm{1}−\sqrt{\mathrm{2}{x}+\mathrm{1}}}{\mathrm{2}}\right)^{{n}} \right\} \\ $$
Question Number 39517 Answers: 0 Comments: 2
$${find}\:{radius}\:{of}\:\:{S}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{x}^{{n}} }{{n}^{\mathrm{2}} } \\ $$$${and}\:{calculate}\:{its}\:{sum} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:\:{and}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:\mathrm{2}^{{n}} }\:. \\ $$$$ \\ $$
Question Number 39524 Answers: 0 Comments: 0
Question Number 39511 Answers: 0 Comments: 2
Question Number 39508 Answers: 1 Comments: 1
Question Number 39486 Answers: 0 Comments: 7
$$\mathrm{sin}\:\theta=\mathrm{sin}\:\alpha\mathrm{sin}\:\left(\frac{\theta+\alpha}{\mathrm{2}}\right) \\ $$$${Express}\:\theta\:{explicitly}\:{in}\:{terms}\:{of}\:\alpha. \\ $$
Question Number 39475 Answers: 1 Comments: 0
Question Number 39470 Answers: 2 Comments: 2
Question Number 39469 Answers: 1 Comments: 0
Question Number 39466 Answers: 0 Comments: 1
Question Number 39464 Answers: 1 Comments: 0
$${Domain}\:\:{of}\:\:{the}\:\:{explicit}\:\:{form}\:\:{of} \\ $$$${the}\:\:{function}\:\:\:{y}\:\:\:{represented}\: \\ $$$${implicitly}\:\:\:{by}\:\:{the}\:\:{equation}\: \\ $$$$\left(\mathrm{1}+{x}\right){cosy}−{x}^{\mathrm{2}} =\mathrm{0}\:\:{is} \\ $$$$\left({a}\right)\:\:\left(−\mathrm{1},\mathrm{1}\right]\:\:\:\:\:\:\:\:\:\:\left({b}\right)\:\:\:\:\left(−\mathrm{1},\:\mathrm{1}−\sqrt{}\mathrm{5}/\mathrm{2}\right] \\ $$$$\left({c}\right)\:\:\:\left[\mathrm{1}−\sqrt{}\mathrm{5}/\mathrm{2},\:\mathrm{1}+\sqrt{}\mathrm{5}/\mathrm{2}\right] \\ $$$$\left({d}\right)\:\:\left[\mathrm{0},\:\mathrm{1}+\sqrt{}\mathrm{5}/\mathrm{2}\right] \\ $$
Question Number 39458 Answers: 0 Comments: 4
$$\mathrm{find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{possible}\:\mathrm{square}\:\mathrm{insribed}\:\mathrm{in} \\ $$$$\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{sides}\:{a}\:{b}\:{c} \\ $$
Question Number 39457 Answers: 1 Comments: 0
Question Number 39443 Answers: 1 Comments: 3
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}+\:\frac{\mathrm{2}}{\mathrm{n}^{\mathrm{2}} +\mathrm{2}}+\:\frac{\mathrm{3}}{\mathrm{n}^{\mathrm{2}} +\mathrm{3}}+\:....+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right]\:=\:? \\ $$
Question Number 39441 Answers: 0 Comments: 2
$$\int_{\frac{\mathrm{1}}{\mathrm{4}}} ^{\:\mathrm{4}} \:\frac{\mathrm{1}}{{x}}\:\mathrm{sin}\:\left({x}−\frac{\mathrm{1}}{{x}}\right){dx}\:=\:? \\ $$
Question Number 39440 Answers: 1 Comments: 0
$$\mathrm{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\:{x}_{} } \:{e}^{{t}\:} \left(\frac{\mathrm{1}+\mathrm{sin}\:{t}}{\mathrm{1}+\mathrm{cos}\:{t}}\right)\:{dt}. \\ $$$${T}\mathrm{hen}\:\:\mathrm{f}\left(\frac{\pi}{\mathrm{3}}\right)×\mathrm{f}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\:=\:? \\ $$
Question Number 39436 Answers: 1 Comments: 2
Question Number 39477 Answers: 1 Comments: 3
$$\int\mathrm{2}^{\mathrm{x}} \mathrm{3}^{\mathrm{2x}} \mathrm{dx}=? \\ $$
Question Number 39431 Answers: 1 Comments: 1
$$\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\mathrm{e}^{\frac{{x}}{\mathrm{2}}} \mathrm{sin}\:\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)\mathrm{d}{x}\:=\:? \\ $$
Question Number 39402 Answers: 1 Comments: 1
Question Number 39483 Answers: 0 Comments: 3
$${find}\:{f}\left({t}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{xt}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:. \\ $$
Question Number 39395 Answers: 0 Comments: 2
$${Given}\:{that}\:\theta\:{is}\:{an}\:{obtuse}\: \\ $$$${angle}\:{find}\:{tan}\:\theta\:{if} \\ $$$${cos}\:\theta\:=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$ \\ $$
Question Number 39389 Answers: 0 Comments: 2
$${calculate}\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{dt}}{\mathrm{1}+\left(\mathrm{1}+{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)^{\mathrm{2}} } \\ $$
Question Number 39388 Answers: 1 Comments: 0
$${calculate}\:{A}\:={tan}\left(\frac{\pi}{\mathrm{5}}\right).{tan}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right).{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{5}}\right).{tan}\left(\frac{\mathrm{4}\pi}{\mathrm{5}}\right) \\ $$
Question Number 39386 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Pg 1683 Pg 1684 Pg 1685 Pg 1686 Pg 1687 Pg 1688 Pg 1689 Pg 1690 Pg 1691 Pg 1692
Terms of Service
Privacy Policy
Contact: info@tinkutara.com