let r∈[0,1[ and x from R
F(x,r) = (1/(2π)) ∫_0 ^(2π) (((1−r^2 )f(t))/(1−2r cos(t−x) +r^2 ))dt with
f ∈ C^0 (R) 2π periodic and ∣∣f∣∣=sup_(t∈R) ∣f(t)∣
prove that F(x,r)= (a_0 /2) + Σ_(n=1) ^∞ r^n (a_n cos(nx) +b_n sin(nx))
with a_n = (1/π) ∫_0 ^(2π) f(t) cos(nt)dt and
b_n = (1/π) ∫_0 ^(2π) f(t)sin(nt)dt
|