Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1687

Question Number 33511    Answers: 1   Comments: 0

find the value of ′k′ such that k(x^2 +y^2 )+(y−2x+1)(y+2x+3)=0 is a circle.Hence obtain the centre and radius of the resulting circle.

$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:'\boldsymbol{\mathrm{k}}'\:\boldsymbol{\mathrm{such}}\:\boldsymbol{\mathrm{that}} \\ $$$$\boldsymbol{\mathrm{k}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)+\left(\boldsymbol{{y}}−\mathrm{2}\boldsymbol{{x}}+\mathrm{1}\right)\left(\boldsymbol{{y}}+\mathrm{2}\boldsymbol{{x}}+\mathrm{3}\right)=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{circle}}.\boldsymbol{\mathrm{Hence}}\:\boldsymbol{\mathrm{obtain}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{centre}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{radius}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{resulting}}\:\boldsymbol{\mathrm{circle}}. \\ $$

Question Number 33508    Answers: 0   Comments: 2

((3^x ×8^x )/(12^(x+1) ))

$$\frac{\mathrm{3}^{{x}} ×\mathrm{8}^{{x}} }{\mathrm{12}^{{x}+\mathrm{1}} } \\ $$

Question Number 33507    Answers: 1   Comments: 0

∫((2cos x)/(3−cos 2x))dx=?

$$\int\frac{\mathrm{2cos}\:{x}}{\mathrm{3}−\mathrm{cos}\:\mathrm{2}{x}}{dx}=? \\ $$

Question Number 33496    Answers: 1   Comments: 0

prove that e^(iπ) +1=0

$$\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{e}^{\mathrm{i}\pi} +\mathrm{1}=\mathrm{0} \\ $$

Question Number 33494    Answers: 0   Comments: 2

∫(e^x /(sin^2 x ))dx

$$\:\int\frac{\boldsymbol{\mathrm{e}}^{\boldsymbol{{x}}} }{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{{x}}\:\:\:\:}\boldsymbol{{dx}} \\ $$

Question Number 33473    Answers: 1   Comments: 3

e^(iπ ) = −1 squaring both sides e^(2πi) = 1 = e^0 comparing powers 2πi = 0 π = 0 or i = 0 ???

$$\:{e}^{{i}\pi\:} =\:−\mathrm{1} \\ $$$${squaring}\:{both}\:{sides} \\ $$$${e}^{\mathrm{2}\pi{i}} \:=\:\mathrm{1}\:=\:{e}^{\mathrm{0}} \\ $$$${comparing}\:{powers} \\ $$$$\mathrm{2}\pi{i}\:=\:\mathrm{0} \\ $$$$\:\pi\:=\:\mathrm{0}\:{or}\:{i}\:=\:\mathrm{0}\:??? \\ $$

Question Number 33479    Answers: 2   Comments: 2

A man takes 15days to dig 6 hectres.how long would 10 boys take to dig 81 hectres if 2 boys do the same amount of work as one man?

$$\boldsymbol{\mathrm{A}}\:\boldsymbol{\mathrm{man}}\:\boldsymbol{\mathrm{takes}}\:\mathrm{15}\boldsymbol{\mathrm{days}}\:\boldsymbol{\mathrm{to}} \\ $$$$\boldsymbol{\mathrm{dig}}\:\mathrm{6}\:\boldsymbol{\mathrm{hectres}}.\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{long}}\:\boldsymbol{\mathrm{would}} \\ $$$$\mathrm{10}\:\boldsymbol{\mathrm{boys}}\:\boldsymbol{\mathrm{take}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{dig}}\:\mathrm{81}\:\boldsymbol{\mathrm{hectres}} \\ $$$$\boldsymbol{\mathrm{if}}\:\mathrm{2}\:\boldsymbol{\mathrm{boys}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{same}}\:\boldsymbol{\mathrm{amount}}\:\boldsymbol{\mathrm{of}} \\ $$$$\boldsymbol{\mathrm{work}}\:\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{one}}\:\boldsymbol{\mathrm{man}}? \\ $$

Question Number 33468    Answers: 1   Comments: 0

The set of integers that satisfies 5>∣n−2∣≥∣n+1∣ is

$${The}\:{set}\:{of}\:{integers}\:{that}\:{satisfies} \\ $$$$\mathrm{5}>\mid{n}−\mathrm{2}\mid\geqslant\mid{n}+\mathrm{1}\mid\:{is} \\ $$

Question Number 33466    Answers: 1   Comments: 2

if tan𝛃=(r/(√s)) and sin𝛃=((√s)/r) show that cos𝛃=(√(r^2 +s))

$$\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{tan}\beta}=\frac{\boldsymbol{\mathrm{r}}}{\sqrt{\boldsymbol{\mathrm{s}}}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{sin}\beta}=\frac{\sqrt{\boldsymbol{\mathrm{s}}}}{\boldsymbol{\mathrm{r}}} \\ $$$$\:\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{cos}\beta}=\sqrt{\boldsymbol{\mathrm{r}}^{\mathrm{2}} +\boldsymbol{\mathrm{s}}} \\ $$

Question Number 33463    Answers: 0   Comments: 1

Find the pricipal and ordinary argument of z=(i/(−2−2i))

$${Find}\:{the}\:{pricipal}\:{and}\:{ordinary} \\ $$$${argument}\:{of}\:{z}=\frac{{i}}{−\mathrm{2}−\mathrm{2}{i}} \\ $$

Question Number 33462    Answers: 1   Comments: 0

using PMI show that ∀ n≥2 the number 5^n ends with the digits 25

$${using}\:{PMI}\:{show}\:{that}\:\forall\:{n}\geqslant\mathrm{2}\:{the} \\ $$$${number}\:\mathrm{5}^{{n}} \:{ends}\:{with}\:{the}\:{digits}\:\mathrm{25} \\ $$

Question Number 33460    Answers: 1   Comments: 0

why do we use greek letters like α,β,θ,π,Ω,ρ in mathematics

$$\:\:{why}\:{do}\:{we}\:{use}\:{greek}\:{letters}\:{like}\: \\ $$$$\alpha,\beta,\theta,\pi,\Omega,\rho\:\:\:{in}\:{mathematics} \\ $$

Question Number 33455    Answers: 1   Comments: 2

Please can someone help with a simplier method of solving this question Q1; Given that the expression x^3 +x^2 −4x +5 and x^3 +3x−7 leave same remainder when divided by (x−a) find the possible values of a

$$\:\:\:\:\:{Please}\:{can}\:{someone}\:{help}\:{with}\:{a} \\ $$$${simplier}\:{method}\:{of}\:{solving}\:{this}\:{question} \\ $$$${Q}\mathrm{1};\:\:\: \\ $$$$\:\:\:{Given}\:{that}\:{the}\:{expression}\:{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{4}{x}\:+\mathrm{5} \\ $$$${and}\:{x}^{\mathrm{3}} +\mathrm{3}{x}−\mathrm{7}\:{leave}\:{same}\:{remainder} \\ $$$${when}\:{divided}\:{by}\:\left({x}−{a}\right)\:{find}\:{the}\:{possible} \\ $$$${values}\:{of}\:{a} \\ $$

Question Number 33452    Answers: 1   Comments: 2

Question Number 33435    Answers: 1   Comments: 0

In a region an electric field exist in a given direction and it passes through a circle of radius R normally. The magnitude of electric field is given as : E = E_0 (1− (r/R)). where r is the distance from centre of circle .Find electric flux through plane of circle within it.

$$\boldsymbol{{I}}{n}\:{a}\:{region}\:{an}\:{electric}\:{field}\:{exist}\:{in}\:{a}\:{given} \\ $$$${direction}\:{and}\:{it}\:{passes}\:{through}\:{a}\:{circle} \\ $$$${of}\:{radius}\:{R}\:{normally}.\:{The}\:{magnitude} \\ $$$${of}\:{electric}\:{field}\:{is}\:{given}\:{as}\:: \\ $$$$\boldsymbol{{E}}\:=\:{E}_{\mathrm{0}} \:\left(\mathrm{1}−\:\frac{{r}}{\boldsymbol{{R}}}\right).\:{where}\:{r}\:{is}\:{the}\:{distance} \\ $$$${from}\:{centre}\:{of}\:{circle}\:.{Find}\:{electric}\: \\ $$$${flux}\:{through}\:{plane}\:{of}\:{circle}\:{within}\:{it}. \\ $$

Question Number 33430    Answers: 0   Comments: 3

Question Number 33425    Answers: 1   Comments: 3

find k if the deteminant of (((3 k)),((2 3)) ) is 2 can someone please teach me how to find the deteminant of a 3×3 matrix ?

$${find}\:{k}\:{if}\:{the}\:{deteminant}\:{of}\: \\ $$$$\:\:\:\begin{pmatrix}{\mathrm{3}\:\:\:\:\:\:\:\:\:{k}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{pmatrix}\:\:\:{is}\:\mathrm{2}\: \\ $$$${can}\:{someone}\:{please}\:{teach}\:{me}\:{how} \\ $$$${to}\:{find}\:{the}\:{deteminant}\:{of}\:{a}\:\mathrm{3}×\mathrm{3} \\ $$$${matrix}\:? \\ $$$$\: \\ $$$$\:\: \\ $$

Question Number 33413    Answers: 0   Comments: 2

the value of θ,in the range 0° ≤ θ≤90° for which sinθ = cos θ is...?

$$ \\ $$$${the}\:{value}\:{of}\:\theta,{in}\:{the}\:{range}\:\mathrm{0}°\:\leqslant\:\:\theta\leqslant\mathrm{90}° \\ $$$${for}\:{which}\:{sin}\theta\:=\:{cos}\:\theta\:{is}...? \\ $$

Question Number 33411    Answers: 0   Comments: 1

Given that u and v are real valued functions in x ,then (d/dx)((u/v)) is equal to?

$$\:\mathrm{Given}\:\mathrm{that}\:{u}\:\mathrm{and}\:{v}\:\mathrm{are}\:\mathrm{real}\:\mathrm{valued} \\ $$$$\mathrm{functions}\:\mathrm{in}\:{x}\:,\mathrm{then}\:\frac{{d}}{{dx}}\left(\frac{{u}}{{v}}\right)\:{is}\:{equal}\:{to}? \\ $$

Question Number 33410    Answers: 1   Comments: 1

please is there any general way for calculating the error or uncertainty in g when m=((4π^2 )/g) where m=slope and g=acceleration due to gravity please help

$${please}\:{is}\:{there}\:{any}\:{general}\:{way}\:{for} \\ $$$${calculating}\:{the}\:{error}\:{or}\:{uncertainty} \\ $$$${in}\:{g}\:{when} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{m}=\frac{\mathrm{4}\pi^{\mathrm{2}} }{{g}}\:{where}\:{m}={slope}\:{and} \\ $$$${g}={acceleration}\:{due}\:{to}\:{gravity} \\ $$$$ \\ $$$$ \\ $$$${please}\:{help} \\ $$

Question Number 33407    Answers: 1   Comments: 0

if y=x! find dy/dx

$${if}\:{y}={x}!\:{find}\:{dy}/{dx} \\ $$

Question Number 33406    Answers: 0   Comments: 4

Find the half derivative of y=ln x

$${Find}\:{the}\:{half}\:{derivative}\:{of}\:{y}=\mathrm{ln}\:{x} \\ $$

Question Number 33400    Answers: 0   Comments: 4

Find out electric field on an axial position due to a ring having linear charge density 𝛌= λ_0 cos θ .

$$\boldsymbol{{Find}}\:{out}\:{electric}\:{field}\:{on}\:{an}\:{axial}\: \\ $$$${position}\:{due}\:{to}\:{a}\:{ring}\:{having}\:{linear} \\ $$$${charge}\:{density}\:\boldsymbol{\lambda}=\:\lambda_{\mathrm{0}} \:\mathrm{cos}\:\theta\:. \\ $$

Question Number 33375    Answers: 0   Comments: 2

If f:R → R is an odd function such that : a) f(1+x) = 1+f(x) . b) x^2 f((1/x)) = f(x) , x≠0. Then find f(x) ?

$${If}\:{f}:{R}\:\rightarrow\:{R}\:{is}\:{an}\:\boldsymbol{{odd}}\:{function}\:{such} \\ $$$${that}\:: \\ $$$$\left.{a}\right)\:{f}\left(\mathrm{1}+{x}\right)\:=\:\mathrm{1}+{f}\left({x}\right)\:. \\ $$$$\left.{b}\right)\:{x}^{\mathrm{2}} \:{f}\left(\frac{\mathrm{1}}{{x}}\right)\:=\:{f}\left({x}\right)\:,\:{x}\neq\mathrm{0}. \\ $$$${Then}\:{find}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:? \\ $$

Question Number 33369    Answers: 1   Comments: 0

Prove that gcd( gcd(A,B),gcd(B,C),gcd(C,A) ) =gcd(A,B,C)

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\mathrm{gcd}\left(\:\:\mathrm{gcd}\left(\mathrm{A},\mathrm{B}\right),\mathrm{gcd}\left(\mathrm{B},\mathrm{C}\right),\mathrm{gcd}\left(\mathrm{C},\mathrm{A}\right)\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{gcd}\left(\mathrm{A},\mathrm{B},\mathrm{C}\right) \\ $$

Question Number 33363    Answers: 0   Comments: 3

  Pg 1682      Pg 1683      Pg 1684      Pg 1685      Pg 1686      Pg 1687      Pg 1688      Pg 1689      Pg 1690      Pg 1691   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com