let put S(x)=Σ_(n=0) ^∞ (((−1)^n )/(n+x))
1) prove that S is C^1 on]0′+∞[
2)give the variation of S(x)
3)prove that ∀x>0 S(x+1)+S(x)=(1/x)
4)give a equivalent for S at 0
5)find a equivalent for S at +∞.
let give f(x)=(1/x) +Σ_(n=1) ^∞ ((1/(x+n)) +(1/(x−n))) with x∈R−Z
1) prove the existence of f(x)
2)prove that f is 1−periodic
3)prove that f((x/2)) +f(((x+1)/2))=2f(x).
g is real function continue let
f(x)=∫_0 ^x sin(x−t)g(t)dt
1)prove that f^′ (x)= ∫_0 ^x cos(t−x)g(t)dt
2)prove that f is so<ution of the diff.equa.
y^(′′) +y =g(x)