Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1686
Question Number 31074 Answers: 0 Comments: 1
$${find}\:\:\int_{{a}} ^{{b}} \:\sqrt{\left({b}−{x}\right)\left({x}−{a}\right)}\:{dx}\:{with}\:{a}<{b}\:.{then}\:{find}\: \\ $$$$\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \sqrt{\left(\sqrt{\mathrm{2}}\:−{x}\right)\left({x}−\mathrm{1}\right)}\:{dx}. \\ $$
Question Number 31073 Answers: 1 Comments: 1
$${find}\:{I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{\mathrm{1}−{sin}\theta}{{cos}\theta}{d}\theta\:. \\ $$
Question Number 31072 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{{e}^{{x}} \sqrt{{sh}\left(\mathrm{2}{x}\right)}}\:{dx}. \\ $$
Question Number 31071 Answers: 1 Comments: 3
$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+{sin}^{\mathrm{2}} {x}}\:. \\ $$
Question Number 31070 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}{cosx}}\:. \\ $$
Question Number 31069 Answers: 1 Comments: 1
$${clculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\sqrt{{x}^{\mathrm{2}} \:−\mathrm{2}{x}+\mathrm{2}}\:{dx} \\ $$
Question Number 31068 Answers: 0 Comments: 0
$${find}\:\:{I}_{{n}} =\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{e}^{−{ax}} \:{cos}^{\mathrm{2}{n}} {xdx}\:\:. \\ $$
Question Number 31067 Answers: 0 Comments: 0
$${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{x}^{\mathrm{2}{n}} \:{e}^{−{ax}^{\mathrm{2}} } {dx}. \\ $$
Question Number 31066 Answers: 0 Comments: 0
$${find}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}{n}+\mathrm{1}} {xdx}. \\ $$
Question Number 31065 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{xsinx}}{\left(\mathrm{1}−{acosx}\right)^{\mathrm{2}} }\:{dx}\:{with}\:\:\mid{a}\mid<\mathrm{1}. \\ $$
Question Number 31063 Answers: 0 Comments: 0
$${find}\:{f}\left({t}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right){dxfor}\:\:{t}>−\mathrm{1} \\ $$
Question Number 31062 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{e}^{{x}} \:{sinx}\:{cos}^{\mathrm{2}} {xdx}. \\ $$
Question Number 31061 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({sin}\theta\:−{cos}\theta\right){ln}\left({sin}\theta+{cos}\theta\right){d}\theta. \\ $$
Question Number 31060 Answers: 0 Comments: 0
$${calculate}\:{by}\:{recurrence}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{lnx}}{\left(\mathrm{1}+{x}\right)^{{n}} }{dx}\:{with}\:{n}\geqslant\mathrm{2}\:. \\ $$
Question Number 31059 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}\theta\right){ln}\left({tan}\theta\right){d}\theta. \\ $$
Question Number 31058 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{arctanx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 31057 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} }\:{dx}.\: \\ $$
Question Number 31056 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\alpha\:+\mathrm{1}}\:\:{with}\:\mathrm{0}<\alpha<\pi\:. \\ $$
Question Number 31055 Answers: 0 Comments: 1
$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:−{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:−\mathrm{2}{x}+\mathrm{4}\right)}\:. \\ $$
Question Number 31054 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}\:. \\ $$
Question Number 31053 Answers: 0 Comments: 1
$${let}\:\lambda\:\in{R}\:{and}\:{a}>\mathrm{0}\:\:{find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ax}} {cos}\left(\lambda{x}\right){dx}\:. \\ $$
Question Number 31052 Answers: 0 Comments: 0
$${let}\:{give}\:\mathrm{0}<{a}<{b}\:\:{find}\:\int_{{a}} ^{{b}} \:\:\frac{{lnx}}{{x}}{dx}\:. \\ $$
Question Number 31051 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{ax}} \:−{e}^{−{bx}} }{\mathrm{1}−\:{e}^{−{x}} }\:{dx}. \\ $$
Question Number 31049 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{x}^{−{x}} {dx}\:. \\ $$
Question Number 31048 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\frac{\pi}{\mathrm{2}}\:−{arctanx}}{{x}}{dx} \\ $$
Question Number 31047 Answers: 0 Comments: 0
$${let}\:\Delta=\left\{\left({x},{y}\right)\in{N}^{\mathrm{2}} \:/{x}+{y}={n}\:,\:{n}\in{N}\right\}\:{find}\:{card}\Delta \\ $$$$\left.\mathrm{2}\right)\:{let}\:{A}=\:\left\{\left({x},{y}\right)\in{N}^{\mathrm{2}} /\:{x}+\mathrm{2}{y}={n}\right\}\:{find}\:{card}\:{A}. \\ $$
Pg 1681 Pg 1682 Pg 1683 Pg 1684 Pg 1685 Pg 1686 Pg 1687 Pg 1688 Pg 1689 Pg 1690
Terms of Service
Privacy Policy
Contact: info@tinkutara.com