Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1686

Question Number 31074    Answers: 0   Comments: 1

find ∫_a ^b (√((b−x)(x−a))) dx with a<b .then find ∫_1 ^(√2) (√(((√2) −x)(x−1))) dx.

$${find}\:\:\int_{{a}} ^{{b}} \:\sqrt{\left({b}−{x}\right)\left({x}−{a}\right)}\:{dx}\:{with}\:{a}<{b}\:.{then}\:{find}\: \\ $$$$\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \sqrt{\left(\sqrt{\mathrm{2}}\:−{x}\right)\left({x}−\mathrm{1}\right)}\:{dx}. \\ $$

Question Number 31073    Answers: 1   Comments: 1

find I= ∫_0 ^(π/2) ((1−sinθ)/(cosθ))dθ .

$${find}\:{I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{\mathrm{1}−{sin}\theta}{{cos}\theta}{d}\theta\:. \\ $$

Question Number 31072    Answers: 0   Comments: 0

find ∫_0 ^∞ (dx/(e^x (√(sh(2x))))) dx.

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{{e}^{{x}} \sqrt{{sh}\left(\mathrm{2}{x}\right)}}\:{dx}. \\ $$

Question Number 31071    Answers: 1   Comments: 3

find ∫_0 ^π (dx/(1+sin^2 x)) .

$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+{sin}^{\mathrm{2}} {x}}\:. \\ $$

Question Number 31070    Answers: 0   Comments: 1

calculate ∫_0 ^π (dx/(1+2cosx)) .

$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}{cosx}}\:. \\ $$

Question Number 31069    Answers: 1   Comments: 1

clculate ∫_0 ^1 x(√(x^2 −2x+2)) dx

$${clculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\sqrt{{x}^{\mathrm{2}} \:−\mathrm{2}{x}+\mathrm{2}}\:{dx} \\ $$

Question Number 31068    Answers: 0   Comments: 0

find I_n =∫_(−(π/2)) ^(π/2) e^(−ax) cos^(2n) xdx .

$${find}\:\:{I}_{{n}} =\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{e}^{−{ax}} \:{cos}^{\mathrm{2}{n}} {xdx}\:\:. \\ $$

Question Number 31067    Answers: 0   Comments: 0

find A_n =∫_0 ^∞ x^(2n) e^(−ax^2 ) dx.

$${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{x}^{\mathrm{2}{n}} \:{e}^{−{ax}^{\mathrm{2}} } {dx}. \\ $$

Question Number 31066    Answers: 0   Comments: 0

find I_n =∫_0 ^(π/2) cos^(2n+1) xdx.

$${find}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}{n}+\mathrm{1}} {xdx}. \\ $$

Question Number 31065    Answers: 0   Comments: 0

find ∫_0 ^π ((xsinx)/((1−acosx)^2 )) dx with ∣a∣<1.

$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{xsinx}}{\left(\mathrm{1}−{acosx}\right)^{\mathrm{2}} }\:{dx}\:{with}\:\:\mid{a}\mid<\mathrm{1}. \\ $$

Question Number 31063    Answers: 0   Comments: 0

find f(t)= ∫_0 ^1 ln(1+tx^2 )dxfor t>−1

$${find}\:{f}\left({t}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right){dxfor}\:\:{t}>−\mathrm{1} \\ $$

Question Number 31062    Answers: 0   Comments: 0

find ∫_0 ^(π/2) e^x sinx cos^2 xdx.

$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{e}^{{x}} \:{sinx}\:{cos}^{\mathrm{2}} {xdx}. \\ $$

Question Number 31061    Answers: 0   Comments: 0

find ∫_0 ^(π/2) (sinθ −cosθ)ln(sinθ+cosθ)dθ.

$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({sin}\theta\:−{cos}\theta\right){ln}\left({sin}\theta+{cos}\theta\right){d}\theta. \\ $$

Question Number 31060    Answers: 0   Comments: 0

calculate by recurrence ∫_0 ^∞ ((lnx)/((1+x)^n ))dx with n≥2 .

$${calculate}\:{by}\:{recurrence}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{lnx}}{\left(\mathrm{1}+{x}\right)^{{n}} }{dx}\:{with}\:{n}\geqslant\mathrm{2}\:. \\ $$

Question Number 31059    Answers: 0   Comments: 0

find ∫_0 ^(π/2) cos(2θ)ln(tanθ)dθ.

$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}\theta\right){ln}\left({tan}\theta\right){d}\theta. \\ $$

Question Number 31058    Answers: 0   Comments: 0

find ∫_0 ^∞ ((x arctanx)/((1+x^2 )^2 ))dx

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{arctanx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$

Question Number 31057    Answers: 0   Comments: 0

find ∫_0 ^1 (((√(1+x^2 )) −(√(1−x^2 )))/x^2 ) dx.

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} }\:{dx}.\: \\ $$

Question Number 31056    Answers: 0   Comments: 1

find ∫_1 ^(+∞) (dx/(x^2 −2xcosα +1)) with 0<α<π .

$${find}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\alpha\:+\mathrm{1}}\:\:{with}\:\mathrm{0}<\alpha<\pi\:. \\ $$

Question Number 31055    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) (dx/((x^2 −x+1)(x^2 −2x+4))) .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:−{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:−\mathrm{2}{x}+\mathrm{4}\right)}\:. \\ $$

Question Number 31054    Answers: 0   Comments: 0

find ∫_0 ^1 (dx/(x^4 +1)) .

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}\:. \\ $$

Question Number 31053    Answers: 0   Comments: 1

let λ ∈R and a>0 find ∫_0 ^∞ e^(−ax) cos(λx)dx .

$${let}\:\lambda\:\in{R}\:{and}\:{a}>\mathrm{0}\:\:{find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ax}} {cos}\left(\lambda{x}\right){dx}\:. \\ $$

Question Number 31052    Answers: 0   Comments: 0

let give 0<a<b find ∫_a ^b ((lnx)/x)dx .

$${let}\:{give}\:\mathrm{0}<{a}<{b}\:\:{find}\:\int_{{a}} ^{{b}} \:\:\frac{{lnx}}{{x}}{dx}\:. \\ $$

Question Number 31051    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ ((e^(−ax) −e^(−bx) )/(1− e^(−x) )) dx.

$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{ax}} \:−{e}^{−{bx}} }{\mathrm{1}−\:{e}^{−{x}} }\:{dx}. \\ $$

Question Number 31049    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ x^(−x) dx .

$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{x}^{−{x}} {dx}\:. \\ $$

Question Number 31048    Answers: 0   Comments: 0

study the convergence of ∫_1 ^(+∞) (((π/2) −arctanx)/x)dx

$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\frac{\pi}{\mathrm{2}}\:−{arctanx}}{{x}}{dx} \\ $$

Question Number 31047    Answers: 0   Comments: 0

let Δ={(x,y)∈N^2 /x+y=n , n∈N} find cardΔ 2) let A= {(x,y)∈N^2 / x+2y=n} find card A.

$${let}\:\Delta=\left\{\left({x},{y}\right)\in{N}^{\mathrm{2}} \:/{x}+{y}={n}\:,\:{n}\in{N}\right\}\:{find}\:{card}\Delta \\ $$$$\left.\mathrm{2}\right)\:{let}\:{A}=\:\left\{\left({x},{y}\right)\in{N}^{\mathrm{2}} /\:{x}+\mathrm{2}{y}={n}\right\}\:{find}\:{card}\:{A}. \\ $$

  Pg 1681      Pg 1682      Pg 1683      Pg 1684      Pg 1685      Pg 1686      Pg 1687      Pg 1688      Pg 1689      Pg 1690   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com