Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1686

Question Number 33592    Answers: 0   Comments: 0

let f(x) =e^(−x^2 ) 1) prove that f^((n)) (x) = p_n (x).e^(−x^2 ) where p_n is a polynome with deg=n 2) prove that ∀ n≥1 p_(n+1) (x) +α(x)p_n (x) +β(n)p_(n−1) (x) =0 find α and β 3)calculate p_0 ,p_1 ,p_2 ,p_3 4) calculate p_n ^(′′) (x) interms of p^′ (x) and p_n (x).

$${let}\:{f}\left({x}\right)\:={e}^{−{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}^{\left({n}\right)} \left({x}\right)\:=\:{p}_{{n}} \left({x}\right).{e}^{−{x}^{\mathrm{2}} } \:\:\:{where}\:{p}_{{n}} {is}\:{a}\:{polynome} \\ $$$${with}\:{deg}={n} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\forall\:{n}\geqslant\mathrm{1}\: \\ $$$${p}_{{n}+\mathrm{1}} \left({x}\right)\:+\alpha\left({x}\right){p}_{{n}} \left({x}\right)\:+\beta\left({n}\right){p}_{{n}−\mathrm{1}} \left({x}\right)\:=\mathrm{0}\:\:{find}\:\alpha\:{and}\:\beta \\ $$$$\left.\mathrm{3}\right){calculate}\:{p}_{\mathrm{0}} ,{p}_{\mathrm{1}} ,{p}_{\mathrm{2}} ,{p}_{\mathrm{3}} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{p}_{{n}} ^{''} \:\left({x}\right)\:{interms}\:{of}\:{p}^{'} \left({x}\right)\:{and}\:{p}_{{n}} \left({x}\right). \\ $$

Question Number 33591    Answers: 1   Comments: 1

find the value of Σ_(n=1) ^∞ (2/(n^3 +3n^2 +2n)) .

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{2}}{{n}^{\mathrm{3}} \:\:+\mathrm{3}{n}^{\mathrm{2}} \:+\mathrm{2}{n}}\:. \\ $$

Question Number 33590    Answers: 0   Comments: 1

let α >1 calculate f(α) = ∫_α ^(+∞) ((x^2 −x+1)/((x−1)^2 (x+1)^2 )) dx .

$${let}\:\alpha\:>\mathrm{1}\:\:{calculate}\:{f}\left(\alpha\right)\:=\:\int_{\alpha} ^{+\infty} \:\:\frac{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:{dx}\:. \\ $$

Question Number 33589    Answers: 0   Comments: 1

1) decompose F(x) = (1/((x^2 +4)(x−3)^2 )) 2) calculate ∫_4 ^(+∞) (dx/((x^2 +4)(x−3)^2 )) .

$$\left.\mathrm{1}\right)\:{decompose}\:{F}\left({x}\right)\:=\:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{4}\right)\left({x}−\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{4}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{4}\right)\left({x}−\mathrm{3}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 33588    Answers: 1   Comments: 1

find the value of Σ_(n=1) ^∞ (1/(n^2 (n+1)(2n+1))) .

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}\:. \\ $$

Question Number 33587    Answers: 0   Comments: 0

let f(x)=∫_0 ^π ln (x^2 −2x cosθ +1)dθ with ∣x∣<1 give a simple form of f(x).

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} {ln}\:\left({x}^{\mathrm{2}} \:−\mathrm{2}{x}\:{cos}\theta\:+\mathrm{1}\right){d}\theta\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${give}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right). \\ $$

Question Number 33586    Answers: 0   Comments: 0

find Σ_(n=1) ^∞ z^n ((sin(nθ))/n) with z from C and ∣z∣<1 .

$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{z}^{{n}} \:\:\frac{{sin}\left({n}\theta\right)}{{n}}\:\:{with}\:{z}\:{from}\:{C}\:{and}\:\mid{z}\mid<\mathrm{1}\:. \\ $$

Question Number 33585    Answers: 0   Comments: 0

study the nature of Σ_(n=1) ^∞ sin(πen!) .

$${study}\:{the}\:{nature}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} {sin}\left(\pi{en}!\right)\:. \\ $$

Question Number 33584    Answers: 0   Comments: 0

find the value of Σ_(n=1) ^∞ (((1+i)^n cos(nθ))/2^n ) .

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(\mathrm{1}+{i}\right)^{{n}} \:{cos}\left({n}\theta\right)}{\mathrm{2}^{{n}} }\:. \\ $$

Question Number 33583    Answers: 0   Comments: 0

let z∈C / ∣z∣<1 calculate Σ_(n=1) ^∞ z^n cos(nθ) and Σ_(n=1) ^∞ z^n sin(nθ)

$${let}\:{z}\in{C}\:\:/\:\mid{z}\mid<\mathrm{1}\:\:{calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{z}^{{n}} {cos}\left({n}\theta\right) \\ $$$${and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{z}^{{n}} \:{sin}\left({n}\theta\right) \\ $$

Question Number 33582    Answers: 0   Comments: 0

find the nature of Σ_(n=1) ^∞ (n^(ln(n)) /e^(√n) ) .

$${find}\:{the}\:{nature}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{n}^{{ln}\left({n}\right)} }{{e}^{\sqrt{{n}}} }\:\:. \\ $$

Question Number 33581    Answers: 0   Comments: 0

find the nature of Σ_(n=1) ^∞ (−1)^n (−(1/n) +arctan((1/n)))^(1/3)

$${find}\:{the}\:{nature}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \left(−\frac{\mathrm{1}}{{n}}\:+{arctan}\left(\frac{\mathrm{1}}{{n}}\right)\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$

Question Number 33575    Answers: 3   Comments: 0

simplify (√((3+2(√(2)))))

$$\mathrm{simplify}\:\sqrt{\left(\mathrm{3}+\mathrm{2}\sqrt{\left.\mathrm{2}\right)}\right.} \\ $$

Question Number 33571    Answers: 1   Comments: 0

f(x) = x^(20) + a_1 x^(19) + a_2 x^(18) + ... + a_(20) If f(1) = f(2) = f(3) = ... = f(20) What is the value of a_1 ?

$${f}\left({x}\right)\:=\:{x}^{\mathrm{20}} \:+\:{a}_{\mathrm{1}} {x}^{\mathrm{19}} \:+\:{a}_{\mathrm{2}} {x}^{\mathrm{18}} \:+\:...\:+\:{a}_{\mathrm{20}} \\ $$$$\mathrm{If}\:{f}\left(\mathrm{1}\right)\:=\:{f}\left(\mathrm{2}\right)\:=\:{f}\left(\mathrm{3}\right)\:=\:...\:=\:{f}\left(\mathrm{20}\right) \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a}_{\mathrm{1}} \:? \\ $$

Question Number 33570    Answers: 1   Comments: 3

A = Σ_(n=2) ^(2017) [∫_1 ^n 2tan^(−1) x + sin^(−1) (((2x)/(1 + x^2 ))) dx] B = Π_(n=2) ^(2017) [∫_1 ^n 2tan^(−1) x + sin^(−1) (((2x)/(1 + x^2 ))) dx] A + B = ...

$${A}\:=\:\underset{{n}=\mathrm{2}} {\overset{\mathrm{2017}} {\sum}}\:\left[\underset{\mathrm{1}} {\overset{{n}} {\int}}\:\mathrm{2tan}^{−\mathrm{1}} \:{x}\:+\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\right)\:{dx}\right] \\ $$$${B}\:=\:\underset{{n}=\mathrm{2}} {\overset{\mathrm{2017}} {\prod}}\:\left[\underset{\mathrm{1}} {\overset{{n}} {\int}}\:\mathrm{2tan}^{−\mathrm{1}} \:{x}\:+\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\right)\:{dx}\right] \\ $$$${A}\:+\:{B}\:=\:... \\ $$

Question Number 33569    Answers: 1   Comments: 0

Given f(x) = x^3 + ax^2 + bx + c with a, b, c ∈ R, the roots are x_1 , x_2 , x_3 ∈ R Let λ is an positive integer that satisfied x_2 − x_1 = λ x_3 > (1/2)(x_1 + x_2 ) What is the max value of ((2a^3 + 27c − 9ab)/λ^3 ) ?

$$\mathrm{Given}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c} \\ $$$$\mathrm{with}\:{a},\:{b},\:{c}\:\in\:\mathbb{R},\:\mathrm{the}\:\mathrm{roots}\:\mathrm{are}\:{x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:{x}_{\mathrm{3}} \:\in\:\mathbb{R} \\ $$$$\mathrm{Let}\:\lambda\:\mathrm{is}\:\mathrm{an}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{that}\:\mathrm{satisfied} \\ $$$${x}_{\mathrm{2}} \:−\:{x}_{\mathrm{1}} \:=\:\lambda \\ $$$${x}_{\mathrm{3}} \:>\:\frac{\mathrm{1}}{\mathrm{2}}\left({x}_{\mathrm{1}} \:+\:{x}_{\mathrm{2}} \right) \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{max}\:\mathrm{value}\:\mathrm{of}\:\:\frac{\mathrm{2}{a}^{\mathrm{3}} \:+\:\mathrm{27}{c}\:−\:\mathrm{9}{ab}}{\lambda^{\mathrm{3}} }\:? \\ $$

Question Number 33557    Answers: 0   Comments: 0

This^ is^ a^ formula. working^ out^ the^ area^ between^ two Toroidal^ coils. Both^ with^ a^ magnetic^ spring^ constant. r=radius=1 a=area=2 k^z =(1/((r+a)))−(1/r^2 )=−a(((2∙r+a))/([(r+a)^2 ∙r^2 ])) ratio=? what^ is^ the^ ratio?

$${This}^{} {is}^{} {a}^{} {formula}. \\ $$$${working}^{} {out}^{} {the}^{} {area}^{} {between}^{} {two} \\ $$$${Toroidal}^{} {coils}. \\ $$$${Both}^{} {with}^{} {a}^{} {magnetic}^{} {spring}^{} {constant}. \\ $$$$ \\ $$$${r}={radius}=\mathrm{1} \\ $$$$\mathrm{a}={area}=\mathrm{2} \\ $$$$ \\ $$$$\mathrm{k}^{\mathrm{z}} =\frac{\mathrm{1}}{\left(\mathrm{r}+\mathrm{a}\right)}−\frac{\mathrm{1}}{\mathrm{r}^{\mathrm{2}} }=−\mathrm{a}\frac{\left(\mathrm{2}\centerdot\mathrm{r}+\mathrm{a}\right)}{\left[\left(\mathrm{r}+\mathrm{a}\right)^{\mathrm{2}} \centerdot\mathrm{r}^{\mathrm{2}} \right]} \\ $$$${ratio}=? \\ $$$${what}^{} {is}^{} {the}^{} {ratio}? \\ $$

Question Number 33551    Answers: 1   Comments: 1

Question Number 33544    Answers: 0   Comments: 0

1) find the value of ∫_0 ^∞ (( e^(−tx^2 ) )/(1+x^2 )) dx with t >0 2) find the value of ∫_0 ^∞ (((1−e^(−x^2 ) ))/(x^2 (1+x^2 )))dx .

$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\:{e}^{−{tx}^{\mathrm{2}} } }{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:{with}\:{t}\:>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } \right)}{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:. \\ $$

Question Number 33542    Answers: 0   Comments: 1

A car with a mass of 1300kg is constructed so that its frame is suspended by four strings.Each has a force constant of 20000N/m. Two people riding the car have a combined mass of 160kg.Find the frequency of vibration of the car.

$${A}\:{car}\:{with}\:{a}\:{mass}\:{of}\:\mathrm{1300}{kg}\:{is} \\ $$$${constructed}\:{so}\:{that}\:{its}\:{frame}\:{is}\: \\ $$$${suspended}\:{by}\:{four}\:{strings}.{Each} \\ $$$${has}\:{a}\:{force}\:{constant}\:{of}\:\mathrm{20000}{N}/{m}. \\ $$$${Two}\:{people}\:{riding}\:{the}\:{car}\:{have}\:{a} \\ $$$${combined}\:{mass}\:{of}\:\mathrm{160}{kg}.{Find}\:{the} \\ $$$${frequency}\:{of}\:{vibration}\:{of}\:{the}\:{car}. \\ $$

Question Number 33535    Answers: 1   Comments: 0

If the frequency of 0.75 long simple pendulum is 1.5Hz,the angular frequency on a corresponding reference circle in rad/s is a)1.5π b)3π c)0.5π d)2π

$${If}\:{the}\:{frequency}\:{of}\:\mathrm{0}.\mathrm{75}\:{long}\:{simple} \\ $$$${pendulum}\:{is}\:\mathrm{1}.\mathrm{5}{Hz},{the}\:{angular} \\ $$$${frequency}\:{on}\:{a}\:{corresponding} \\ $$$${reference}\:{circle}\:{in}\:{rad}/{s}\:{is} \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left..\mathrm{5}\pi\:{b}\right)\mathrm{3}\pi\:{c}\right)\mathrm{0}.\mathrm{5}\pi\:{d}\right)\mathrm{2}\pi \\ $$

Question Number 33533    Answers: 1   Comments: 0

A mass of 2kg is attached to a spring with constant 8N/m.It is⊛ then displaced to the point x=2. What time does it take for the block to travel to the point x=1? a)40s b)60s c)30s d)20s

$${A}\:{mass}\:{of}\:\mathrm{2}{kg}\:{is}\:{attached}\:{to}\:{a} \\ $$$${spring}\:{with}\:{constant}\:\mathrm{8}{N}/{m}.{It}\:{is}\circledast \\ $$$${then}\:{displaced}\:{to}\:{the}\:{point}\:{x}=\mathrm{2}. \\ $$$${What}\:{time}\:{does}\:{it}\:{take}\:{for}\:{the}\:{block} \\ $$$${to}\:{travel}\:{to}\:{the}\:{point}\:{x}=\mathrm{1}? \\ $$$$\left.{a}\left.\right)\left.\mathrm{4}\left.\mathrm{0}{s}\:{b}\right)\mathrm{60}{s}\:{c}\right)\mathrm{30}{s}\:{d}\right)\mathrm{20}{s} \\ $$

Question Number 33531    Answers: 0   Comments: 16

∫_0 ^∞ (e^(−x^2 ) /(x^2 +1))dx=?

$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} +\mathrm{1}}{dx}=? \\ $$

Question Number 33518    Answers: 0   Comments: 0

α^4 +β^(4 ) solve please

$$\alpha^{\mathrm{4}} +\beta^{\mathrm{4}\:} {solve}\:{please} \\ $$

Question Number 33515    Answers: 0   Comments: 1

expand α^4 +β^(β ) please

$${expand}\:\alpha^{\mathrm{4}} +\beta^{\beta\:\:} {please} \\ $$

Question Number 33513    Answers: 0   Comments: 1

In a recent pool of 500 men and 500 women it was observed that a total of 650 were married. of those married 275 were men and 500 claimed to be happy.out of 750 who claimed to be happy,400 were men of which 200 were married.Represent this information on the venn−diagram and then find (i)the number of married who are unhappy. (ii)the number of married who are happy.

$$\boldsymbol{\mathrm{In}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{recent}}\:\boldsymbol{\mathrm{pool}}\:\boldsymbol{\mathrm{of}}\:\mathrm{500}\:\boldsymbol{\mathrm{men}}\:\boldsymbol{\mathrm{and}}\:\mathrm{500}\:\boldsymbol{\mathrm{women}} \\ $$$$\boldsymbol{\mathrm{it}}\:\boldsymbol{\mathrm{was}}\:\boldsymbol{\mathrm{observed}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{total}}\:\boldsymbol{\mathrm{of}}\:\mathrm{650}\:\boldsymbol{\mathrm{were}}\:\boldsymbol{\mathrm{married}}. \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{those}}\:\boldsymbol{\mathrm{married}}\:\mathrm{275}\:\boldsymbol{\mathrm{were}}\:\boldsymbol{\mathrm{men}}\:\boldsymbol{\mathrm{and}}\:\mathrm{500} \\ $$$$\boldsymbol{\mathrm{claimed}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{happy}}.\boldsymbol{\mathrm{out}}\:\boldsymbol{\mathrm{of}}\:\mathrm{750}\:\boldsymbol{\mathrm{who}}\:\boldsymbol{\mathrm{claimed}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{happy}},\mathrm{400}\:\boldsymbol{\mathrm{were}}\:\boldsymbol{\mathrm{men}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{which}}\:\mathrm{200} \\ $$$$\boldsymbol{\mathrm{were}}\:\boldsymbol{\mathrm{married}}.\boldsymbol{\mathrm{Represent}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{information}} \\ $$$$\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{venn}}−\boldsymbol{\mathrm{diagram}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{then}}\:\boldsymbol{\mathrm{find}} \\ $$$$\left(\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{number}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{married}}\:\boldsymbol{\mathrm{who}}\: \\ $$$$\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{unhappy}}. \\ $$$$\left(\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{number}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{married}}\:\boldsymbol{\mathrm{who}} \\ $$$$\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{happy}}. \\ $$$$ \\ $$$$ \\ $$

  Pg 1681      Pg 1682      Pg 1683      Pg 1684      Pg 1685      Pg 1686      Pg 1687      Pg 1688      Pg 1689      Pg 1690   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com