Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1685

Question Number 31628    Answers: 0   Comments: 5

Systems of particles doubt

$${Systems}\:{of}\:{particles}\:{doubt} \\ $$

Question Number 31626    Answers: 1   Comments: 0

Question Number 31620    Answers: 0   Comments: 0

Question Number 31619    Answers: 1   Comments: 0

Question Number 31611    Answers: 2   Comments: 1

Question Number 31596    Answers: 2   Comments: 2

Question Number 31595    Answers: 2   Comments: 2

Question Number 31594    Answers: 1   Comments: 0

Question Number 31591    Answers: 1   Comments: 4

Question Number 31584    Answers: 1   Comments: 0

Question Number 31583    Answers: 0   Comments: 0

how to read this ⟨x⟩. p

$${how}\:{to}\:{read}\:{this}\:\langle{x}\rangle.\:{p} \\ $$

Question Number 31579    Answers: 1   Comments: 0

Let a and b be an integer part and a decimal fraction of (√7), respectively. Then the integer part of (a/b) is?

$$\mathrm{Let}\:{a}\:\mathrm{and}\:{b}\:\mathrm{be}\:\mathrm{an}\:\mathrm{integer}\:\mathrm{part}\:\mathrm{and}\:\mathrm{a}\:\mathrm{decimal} \\ $$$$\mathrm{fraction}\:\mathrm{of}\:\sqrt{\mathrm{7}},\:\mathrm{respectively}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{integer} \\ $$$$\mathrm{part}\:\mathrm{of}\:\frac{{a}}{{b}}\:\mathrm{is}? \\ $$

Question Number 31573    Answers: 0   Comments: 1

Question Number 31572    Answers: 1   Comments: 0

Question Number 31571    Answers: 2   Comments: 0

Question Number 31569    Answers: 1   Comments: 0

(a,(1/a)),(b,(1/b)),(c,(1/c)),(d,(1/d)) are four distinct points on a circle of radius is 4 units then abcd is equal to ?

$$\left({a},\frac{\mathrm{1}}{{a}}\right),\left({b},\frac{\mathrm{1}}{{b}}\right),\left({c},\frac{\mathrm{1}}{{c}}\right),\left({d},\frac{\mathrm{1}}{{d}}\right)\:{are}\:{four} \\ $$$${distinct}\:{points}\:{on}\:{a}\:{circle}\:{of}\:{radius} \\ $$$${is}\:\mathrm{4}\:{units}\:{then}\:{abcd}\:{is}\:{equal}\:{to}\:? \\ $$

Question Number 31566    Answers: 1   Comments: 1

Question Number 31564    Answers: 0   Comments: 1

If f(x) and g(x) are two integrable functions defined on [a, b], then ∣ ∫_a ^b f(x) g(x) dx ∣ is

$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{and}\:\:{g}\left({x}\right)\:\mathrm{are}\:\mathrm{two}\:\mathrm{integrable} \\ $$$$\mathrm{functions}\:\mathrm{defined}\:\mathrm{on}\:\left[{a},\:{b}\right],\:\mathrm{then} \\ $$$$\mid\:\underset{{a}} {\overset{{b}} {\int}}\:{f}\left({x}\right)\:{g}\left({x}\right)\:{dx}\:\mid\:\:\:\mathrm{is} \\ $$

Question Number 31562    Answers: 1   Comments: 0

Question Number 31560    Answers: 1   Comments: 1

Question Number 31907    Answers: 0   Comments: 0

Question Number 31906    Answers: 1   Comments: 0

Question Number 31549    Answers: 1   Comments: 0

witout using calculator, simpify cos22.5°

$${witout}\:{using}\:{calculator},\:{simpify} \\ $$$${cos}\mathrm{22}.\mathrm{5}° \\ $$

Question Number 31548    Answers: 1   Comments: 0

simplify cosx + (√3)sinx as a single trigonometry ratio

$${simplify}\:{cosx}\:+\:\sqrt{\mathrm{3}}{sinx}\:{as}\:{a}\: \\ $$$${single}\:{trigonometry}\:{ratio} \\ $$

Question Number 31546    Answers: 1   Comments: 0

let consider the numrtical function f(x)= (1/(x^2 +x+1)) calculate f^((n)) (x) then give f^((n)) (0).

$${let}\:{consider}\:{the}\:{numrtical}\:{function} \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}\:\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{then}\:{give} \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$

Question Number 31543    Answers: 0   Comments: 2

∫((x^3 +x+1)/(x^2 +1)) dx

$$\int\frac{{x}^{\mathrm{3}} +{x}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$$$ \\ $$$$ \\ $$

  Pg 1680      Pg 1681      Pg 1682      Pg 1683      Pg 1684      Pg 1685      Pg 1686      Pg 1687      Pg 1688      Pg 1689   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com