Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1685
Question Number 39458 Answers: 0 Comments: 4
$$\mathrm{find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{possible}\:\mathrm{square}\:\mathrm{insribed}\:\mathrm{in} \\ $$$$\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{sides}\:{a}\:{b}\:{c} \\ $$
Question Number 39457 Answers: 1 Comments: 0
Question Number 39443 Answers: 1 Comments: 3
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}+\:\frac{\mathrm{2}}{\mathrm{n}^{\mathrm{2}} +\mathrm{2}}+\:\frac{\mathrm{3}}{\mathrm{n}^{\mathrm{2}} +\mathrm{3}}+\:....+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right]\:=\:? \\ $$
Question Number 39441 Answers: 0 Comments: 2
$$\int_{\frac{\mathrm{1}}{\mathrm{4}}} ^{\:\mathrm{4}} \:\frac{\mathrm{1}}{{x}}\:\mathrm{sin}\:\left({x}−\frac{\mathrm{1}}{{x}}\right){dx}\:=\:? \\ $$
Question Number 39440 Answers: 1 Comments: 0
$$\mathrm{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\:{x}_{} } \:{e}^{{t}\:} \left(\frac{\mathrm{1}+\mathrm{sin}\:{t}}{\mathrm{1}+\mathrm{cos}\:{t}}\right)\:{dt}. \\ $$$${T}\mathrm{hen}\:\:\mathrm{f}\left(\frac{\pi}{\mathrm{3}}\right)×\mathrm{f}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\:=\:? \\ $$
Question Number 39436 Answers: 1 Comments: 2
Question Number 39477 Answers: 1 Comments: 3
$$\int\mathrm{2}^{\mathrm{x}} \mathrm{3}^{\mathrm{2x}} \mathrm{dx}=? \\ $$
Question Number 39431 Answers: 1 Comments: 1
$$\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\mathrm{e}^{\frac{{x}}{\mathrm{2}}} \mathrm{sin}\:\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)\mathrm{d}{x}\:=\:? \\ $$
Question Number 39402 Answers: 1 Comments: 1
Question Number 39483 Answers: 0 Comments: 3
$${find}\:{f}\left({t}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{xt}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:. \\ $$
Question Number 39395 Answers: 0 Comments: 2
$${Given}\:{that}\:\theta\:{is}\:{an}\:{obtuse}\: \\ $$$${angle}\:{find}\:{tan}\:\theta\:{if} \\ $$$${cos}\:\theta\:=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$ \\ $$
Question Number 39389 Answers: 0 Comments: 2
$${calculate}\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{dt}}{\mathrm{1}+\left(\mathrm{1}+{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)^{\mathrm{2}} } \\ $$
Question Number 39388 Answers: 1 Comments: 0
$${calculate}\:{A}\:={tan}\left(\frac{\pi}{\mathrm{5}}\right).{tan}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right).{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{5}}\right).{tan}\left(\frac{\mathrm{4}\pi}{\mathrm{5}}\right) \\ $$
Question Number 39386 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 39384 Answers: 2 Comments: 0
$$\mathrm{The}\:\mathrm{values}\:\mathrm{of}\:\mathrm{a}\:\mathrm{for}\:\mathrm{which}\:\mathrm{y}=\:\mathrm{a}{x}^{\mathrm{2}} +{ax}+\frac{\mathrm{1}}{\mathrm{24}} \\ $$$${and}\:{x}\:=\:{ay}^{\mathrm{2}} +{ay}+\frac{\mathrm{1}}{\mathrm{24}}\:{touch}\:{each}\:{other} \\ $$$${are} \\ $$$$\left.\mathrm{1}\left.\right)\:\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\left.\mathrm{3}\left.\right)\:\frac{\mathrm{13}+\sqrt{\mathrm{601}}}{\mathrm{12}}\:\:\:\:\:\:\:\mathrm{4}\right)\:\frac{\mathrm{13}−\sqrt{\mathrm{601}}}{\mathrm{12}}. \\ $$
Question Number 39383 Answers: 1 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\:\:\frac{{sinxdx}}{{cosx}\left(\mathrm{2}+{ln}\left({cosx}\right)\right.}\:. \\ $$
Question Number 39382 Answers: 1 Comments: 0
Question Number 39381 Answers: 1 Comments: 0
Question Number 39380 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}+\mathrm{1}} \\ $$
Question Number 39379 Answers: 1 Comments: 6
Question Number 39378 Answers: 0 Comments: 1
$${study}\:{the}\:{derivability}\:{of} \\ $$$${f}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{nx}\:+\mathrm{1}} \\ $$
Question Number 39376 Answers: 0 Comments: 0
$${how}\:{to}\:{calculate}\:{the}\:{product}\:\left(\sum_{{n}=\mathrm{0}} ^{\infty} {a}_{{n}} {x}^{{n}} \right).\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{b}_{{n}} \:{x}^{\mathrm{2}{n}} \right)? \\ $$
Question Number 39375 Answers: 0 Comments: 1
Question Number 39374 Answers: 0 Comments: 2
$${calculate}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 39373 Answers: 0 Comments: 1
$${find}\:{the}\:{values}\:{of}\:{integrals} \\ $$$${A}\:=\:\int_{−\infty} ^{+\infty} \:{cos}\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right){dx}\:\:\:{and}\:{B}\:=\:\int_{−\infty} ^{+\infty} \:{sin}\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right){dx} \\ $$
Question Number 39371 Answers: 2 Comments: 1
Pg 1680 Pg 1681 Pg 1682 Pg 1683 Pg 1684 Pg 1685 Pg 1686 Pg 1687 Pg 1688 Pg 1689
Terms of Service
Privacy Policy
Contact: info@tinkutara.com