Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1684
Question Number 37285 Answers: 0 Comments: 3
$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{nx}^{\mathrm{2}} } {sin}\left(\frac{{x}}{{n}}\right){dx}\:\:{with}\:{n}\:{integr}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 37284 Answers: 0 Comments: 1
$${find}\:\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{{n}} }{{ch}\left({x}\right)}\:{dx}\:. \\ $$
Question Number 37283 Answers: 0 Comments: 1
$${find}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{cosx}}{{ch}\left({x}\right)}\:{dx}\:. \\ $$
Question Number 37282 Answers: 0 Comments: 5
$${let}\:{f}\left({x}\right)=\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right){developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 37281 Answers: 0 Comments: 1
$${find}\:{a}\:{better}\:{approximation}\:{for}\:{the} \\ $$$${integrals}\: \\ $$$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{1}} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:. \\ $$
Question Number 37280 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{6}} \:\:\:\frac{{e}^{{x}−\left[{x}\right]} }{\mathrm{1}+{e}^{{x}} }{dx}\:. \\ $$
Question Number 37279 Answers: 1 Comments: 1
$${cslculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\left({x}−{y}\right){e}^{−{x}−{y}} {dxdy}\:. \\ $$
Question Number 37278 Answers: 0 Comments: 1
$$\:{calculate}\:\int\int_{{D}} \:{x}\:{cos}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){dxdy} \\ $$$${with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\right. \\ $$$$\left.\mathrm{1}\leqslant{y}\leqslant\mathrm{3}\right\} \\ $$
Question Number 37277 Answers: 0 Comments: 3
$${let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{{n}} }\:\:{with}\:{n}\:{integr} \\ $$$$\left.\mathrm{1}\right){find}\:{f}^{'} \left({x}\right)\:{and}\:{f}^{''} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{poles}\:{of}\:{f} \\ $$$$\left.\mathrm{3}\right){calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{4}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 37276 Answers: 0 Comments: 0
$${calculate}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{4}} \:\left(−\mathrm{1}\right)^{\left[{x}\right]} \left({x}^{{n}} \:−{x}\right){dx} \\ $$
Question Number 37275 Answers: 0 Comments: 0
$${let}\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{arctan}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \:. \\ $$
Question Number 37273 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)={ln}\left({x}−{sinx}\right) \\ $$$$\left.\mathrm{1}\right){find}\:{D}_{{f}} \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 37272 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)={cos}\left({x}−{e}^{−{x}} \right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 37271 Answers: 0 Comments: 2
$${find}\:\:{A}_{{n}} =\int_{\mathrm{1}} ^{\mathrm{2}} \left(\:\mathrm{1}\:+\frac{\mathrm{1}}{{x}}\:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+...+\frac{\mathrm{1}}{{x}^{{n}} }\right)^{\mathrm{2}} {dx} \\ $$
Question Number 37270 Answers: 1 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}−{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}}\right)^{\mathrm{2}} {dx}\:. \\ $$
Question Number 37269 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)=\:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{x}\right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 37263 Answers: 1 Comments: 1
Question Number 37258 Answers: 1 Comments: 0
$$\int\:\frac{{x}^{\mathrm{3}} +\mathrm{1}}{\sqrt{{x}^{\mathrm{2}} +{x}}}\:{dx}\:=\:? \\ $$
Question Number 37252 Answers: 1 Comments: 1
Question Number 37540 Answers: 1 Comments: 0
$$\mathrm{For}\:{x}>\mathrm{1}\:,\: \\ $$$$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}\:=\:? \\ $$
Question Number 37249 Answers: 0 Comments: 0
$${a}\:{triangle}\:{with}\:{vertices}\: \\ $$$$\:{A}\left(\mathrm{2},\mathrm{1}\right),{B}\left(\mathrm{6},\mathrm{1}\right)\:{and}\:\left(\mathrm{3},\mathrm{3}\right)\:{is}\:{transformed} \\ $$$${by}\:\begin{pmatrix}{\mathrm{2}\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{pmatrix}\: \\ $$$$\left.{a}\right){find}\:{the}\:{image}\:{A}'{B}'{C}'\:{after}\: \\ $$$${this}\:{transformstion} \\ $$$$\left.{b}\right)\:{state}\:{the}\:{type}\:{of}\:{transformation} \\ $$
Question Number 37244 Answers: 1 Comments: 0
$$\mathrm{sin}^{\mathrm{2}} \left(\pi/\mathrm{11}\right)+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2}\pi/\mathrm{11}\right)+...+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{5}\pi/\mathrm{11}\right)=? \\ $$
Question Number 37243 Answers: 0 Comments: 0
$${find}\:{f}\:\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{{x}} {ln}\left(\mathrm{1}+{e}^{−{tx}} \right){dx}\:{with}\:{t}\:>\mathrm{0}\:. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{{x}} {ln}\left(\mathrm{1}+{e}^{−{nx}} \right)\:{dx} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} \:. \\ $$
Question Number 37237 Answers: 1 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{cos}\theta.{sin}\theta}{{cos}\theta\:+{sin}\theta}\:{d}\theta\:. \\ $$
Question Number 37236 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mid{sin}\left(\frac{{kt}}{\mathrm{2}}\right)\mid\:{dt}\:\:{with}\:{k}\:{integr} \\ $$$${and}\:{k}\geqslant\mathrm{3} \\ $$
Question Number 37235 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{4}{sin}^{\mathrm{2}} {t}\:+{cos}^{\mathrm{2}} \left({t}\right)}\:\:{dt} \\ $$
Pg 1679 Pg 1680 Pg 1681 Pg 1682 Pg 1683 Pg 1684 Pg 1685 Pg 1686 Pg 1687 Pg 1688
Terms of Service
Privacy Policy
Contact: info@tinkutara.com