Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1684
Question Number 34692 Answers: 0 Comments: 1
$${find}\:{lim}_{{n}\rightarrow+\infty} \frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}^{\mathrm{2}} \:{sin}\left(\frac{{k}\pi}{{n}}\right) \\ $$
Question Number 34691 Answers: 0 Comments: 0
$${calculate}\:\:\sum_{{n}=\mathrm{3}} ^{\infty} \:\:\:\frac{\mathrm{2}{n}−\mathrm{1}}{{n}^{\mathrm{3}} \:−\mathrm{4}{n}}\:. \\ $$
Question Number 34690 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\frac{\mathrm{1}}{{n}!}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({arcsinx}\right)^{{n}} {dx} \\ $$$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \:. \\ $$
Question Number 34689 Answers: 0 Comments: 1
$${prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\frac{{k}}{{n}^{\mathrm{2}} }\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}{n}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right) \\ $$
Question Number 34688 Answers: 0 Comments: 1
$${cslculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:{ln}\left(\mathrm{1}+\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\right) \\ $$
Question Number 34687 Answers: 0 Comments: 0
$${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\left(\frac{\mathrm{1}}{\sqrt{{n}−\mathrm{1}}}\:+\:\frac{\mathrm{1}}{\sqrt{{n}+\mathrm{1}}}\:−\frac{\mathrm{2}}{\sqrt{{n}}}\right) \\ $$
Question Number 34686 Answers: 0 Comments: 0
$${decompose}\:{F}\left({x}\right)\:\:=\:\frac{\left(\mathrm{2}{n}\right)!}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}^{\mathrm{2}} \:−\mathrm{2}\right)....\left({x}^{\mathrm{2}} \:−{n}\right)} \\ $$
Question Number 34685 Answers: 0 Comments: 0
$${decompose}\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\left({x}+\mathrm{2}\right)\left(\:{x}^{{n}} \:\:−\mathrm{1}\right)}\:\:{with}\:{n}\:\in\:{N}^{\bigstar} \\ $$
Question Number 34684 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\:\frac{\pi}{\mathrm{4}}\:−\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}} \\ $$$${calcilate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{U}_{{n}} \\ $$
Question Number 34683 Answers: 0 Comments: 0
$${find}?{the}\:{nature}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left\{\pi\left(\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{{n}} \right\} \\ $$
Question Number 34682 Answers: 0 Comments: 0
$${calculate}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{ln}\left({cos}\left(\frac{{a}}{\mathrm{2}^{{n}} }\right)\right) \\ $$
Question Number 34681 Answers: 0 Comments: 0
$${calculate}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\left\{\:\frac{\mathrm{1}+{tanx}}{\mathrm{1}+{thx}}\right\}^{\frac{\mathrm{1}}{{sinx}}} . \\ $$
Question Number 34680 Answers: 0 Comments: 0
$${decompose}\:{inside}\:{C}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\:\:\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} {cos}\left(\mathrm{2}{a}\right)\:+\mathrm{1}}\:. \\ $$
Question Number 34679 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:=\:\:\frac{{x}}{\mathrm{4}{x}^{\mathrm{2}} \:−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{ontegr}\:{serie}\:. \\ $$
Question Number 34678 Answers: 0 Comments: 0
$${prove}\:{that}\:\forall\:{n}\geqslant\mathrm{3}\:\:\:\:\:\sqrt{{n}}\:\:<^{{n}} \sqrt{{n}!} \\ $$$$ \\ $$
Question Number 34677 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left[{x}\:+\frac{{k}}{{n}}\right]\:=\left[{nx}\right]\:\:\forall\:{n}\in\:\in{N}^{\bigstar} \\ $$
Question Number 34676 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}+\mathrm{1}}\:=\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\:\frac{\mathrm{1}}{{k}} \\ $$
Question Number 34675 Answers: 0 Comments: 0
$${provethat}\:{e}\:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\left(\mathrm{1}−{t}\right)^{{n}} }{{n}!}\:{e}^{{t}} \:{dt}\:. \\ $$
Question Number 34674 Answers: 0 Comments: 0
$${find}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{x}\:{sinx}}{\mathrm{1}+{cos}^{\mathrm{2}} {x}}\:{dx} \\ $$
Question Number 34673 Answers: 0 Comments: 0
$${solve}\:\left(\frac{\mathrm{1}+{iz}}{\mathrm{1}−{iz}}\right)^{{n}} \:=\:\frac{\mathrm{1}+{itan}\alpha}{\mathrm{1}−{itan}\alpha}\:\:{with}\:−\frac{\pi}{\mathrm{2}}<\alpha<\frac{\pi}{\mathrm{2}} \\ $$
Question Number 34672 Answers: 0 Comments: 0
$${prove}\:{that}\:\forall{n}\in{N}\:\:\:\mid{sin}\left({nx}\right)\mid\leqslant{n}\mid{sinx}\mid\:. \\ $$
Question Number 34671 Answers: 0 Comments: 0
$${calculste}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{arctan}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right). \\ $$
Question Number 34669 Answers: 0 Comments: 1
$${let}\:{P}\left({x}\right)=\left(\mathrm{1}+{x}+{ix}^{\mathrm{2}} \right)^{{n}} \:−\left(\mathrm{1}+{x}\:−{ix}^{\mathrm{2}} \right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{inside}\:{C}\left[{x}\right]\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{factorize}\:{indide}\:{R}\left[{x}\right]\:{P}\left({x}\right). \\ $$
Question Number 34668 Answers: 0 Comments: 0
$${find}\:{the}\:{roots}\:{of}?{p}\left({x}\right)\:=\:{x}^{\mathrm{2}{n}} \:−\mathrm{2}{x}^{{n}} \:{cos}\left({n}\theta\right)\:+\mathrm{1} \\ $$$$\left.\mathrm{2}\right)?{factorize}\:{p}\left({x}\right)\: \\ $$
Question Number 34667 Answers: 0 Comments: 0
$${solve}\:\:\left({x}+\mathrm{1}\right)^{{n}} \:=\:{e}^{\mathrm{2}{ina}} \:\:\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$${P}_{{n}} =\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left({a}\:+\frac{{k}\pi}{{n}}\right) \\ $$
Question Number 34666 Answers: 0 Comments: 0
$${simplify}\:{sin}^{\mathrm{2}} \left(\:\frac{{arccosx}}{\mathrm{2}}\right) \\ $$
Pg 1679 Pg 1680 Pg 1681 Pg 1682 Pg 1683 Pg 1684 Pg 1685 Pg 1686 Pg 1687 Pg 1688
Terms of Service
Privacy Policy
Contact: info@tinkutara.com