Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1683

Question Number 34746    Answers: 0   Comments: 0

y+(d^2 y/dx^2 )=(1/x)(xln x−(dy/dx)+cos x) y=?

$${y}+\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\mathrm{1}}{{x}}\left({x}\mathrm{ln}\:{x}−\frac{{dy}}{{dx}}+\mathrm{cos}\:{x}\right) \\ $$$${y}=? \\ $$

Question Number 34733    Answers: 0   Comments: 0

Someone plz solve Q 34652

$${Someone}\:{plz}\:{solve}\: \\ $$$${Q}\:\mathrm{34652}\: \\ $$

Question Number 34724    Answers: 1   Comments: 1

use bernoulli methods sec^2 y(dy/dx)+xtany=x^3

$$\boldsymbol{\mathrm{use}}\:\boldsymbol{\mathrm{bernoulli}}\:\boldsymbol{\mathrm{methods}} \\ $$$$\boldsymbol{\mathrm{sec}}^{\mathrm{2}} \boldsymbol{{y}}\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}+\boldsymbol{{x}\mathrm{tan}{y}}=\boldsymbol{{x}}^{\mathrm{3}} \\ $$

Question Number 34739    Answers: 3   Comments: 3

Question Number 34738    Answers: 0   Comments: 2

Question Number 34737    Answers: 0   Comments: 0

Question Number 34736    Answers: 0   Comments: 1

letf(x)=−2x +(√(x−3)) 1) find f^(−1) (x) 2) calculate (f^(−1) )^′ (x) and (f^(−1) )^, (2) 3) let g(x) = x^2 −2x+3 calculate fog(x) and give D_(fog) 4) find (fog)^(−1) (x) 5) calculate ((fog)^(−1) )^′ (x).

$${letf}\left({x}\right)=−\mathrm{2}{x}\:\:+\sqrt{{x}−\mathrm{3}} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:\:{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\left({f}^{−\mathrm{1}} \right)^{'} \left({x}\right)\:\:\:{and}\:\left({f}^{−\mathrm{1}} \right)^{,} \left(\mathrm{2}\right) \\ $$$$\left.\mathrm{3}\right)\:{let}\:{g}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:−\mathrm{2}{x}+\mathrm{3} \\ $$$${calculate}\:{fog}\left({x}\right)\:{and}\:{give}\:{D}_{{fog}} \\ $$$$\left.\mathrm{4}\right)\:{find}\:\left({fog}\right)^{−\mathrm{1}} \left({x}\right) \\ $$$$\left.\mathrm{5}\right)\:{calculate}\:\:\left(\left({fog}\right)^{−\mathrm{1}} \right)^{'} \left({x}\right). \\ $$

Question Number 34734    Answers: 1   Comments: 1

given the sum of the first n terms of an AP is x^2 the sum of the first 2n terms of the same AP is x^2 +x show that the sum of the first 4n terms is 4x^2 −8x+4

$$\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{terms}}\: \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{AP}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{{x}}^{\mathrm{2}} \:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}} \\ $$$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\mathrm{2}\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{same}}\:\boldsymbol{\mathrm{AP}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{x}} \\ $$$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\mathrm{4}\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{terms}}\:\mathrm{is} \\ $$$$\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{8}\boldsymbol{{x}}+\mathrm{4} \\ $$

Question Number 34721    Answers: 0   Comments: 0

let ξ(x) = Σ_(n=1) ^∞ (1/n^x ) with x>1 1)prove that (1/(x−1)) ≤ξ(x)≤ (x/(x−1)) 2) find lim_(x→1^+ ) (x−1)ξ(x) .

$${let}\:\xi\left({x}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:{with}\:{x}>\mathrm{1} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\:\frac{\mathrm{1}}{{x}−\mathrm{1}}\:\leqslant\xi\left({x}\right)\leqslant\:\frac{{x}}{{x}−\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{x}\rightarrow\mathrm{1}^{+} } \left({x}−\mathrm{1}\right)\xi\left({x}\right)\:. \\ $$

Question Number 34720    Answers: 0   Comments: 0

let B(p,q) = ∫_0 ^1 x^(p−1) (1−x)^(q−1) dx calculate B((1/3), (1/3)) 2) calculate B((1/2) ,(2/3)) .

$${let}\:{B}\left({p},{q}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{p}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{q}−\mathrm{1}} {dx} \\ $$$${calculate}\:{B}\left(\frac{\mathrm{1}}{\mathrm{3}},\:\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{B}\left(\frac{\mathrm{1}}{\mathrm{2}}\:,\frac{\mathrm{2}}{\mathrm{3}}\right)\:. \\ $$

Question Number 34719    Answers: 1   Comments: 2

calculate Γ(n+(1/2)) with n ∈N.

$${calculate}\:\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\:{with}\:{n}\:\in{N}. \\ $$

Question Number 34718    Answers: 1   Comments: 0

How many numbers greater than 350 can be formed from 1, 2, 3, 4 and 5

$$\mathrm{How}\:\mathrm{many}\:\mathrm{numbers}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{350}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{from}\:\:\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4}\:\mathrm{and}\:\mathrm{5} \\ $$

Question Number 34717    Answers: 0   Comments: 1

let I_n = ∫∫_([(1/n),n]^2 ) (((√(xy)) dxdy)/(2 +x^2 +y^2 )) find lim I_n when n→+∞.

$${let}\:{I}_{{n}} =\:\int\int_{\left[\frac{\mathrm{1}}{{n}},{n}\right]^{\mathrm{2}} } \:\:\:\:\:\frac{\sqrt{{xy}}\:{dxdy}}{\mathrm{2}\:+{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} } \\ $$$${find}\:{lim}\:{I}_{{n}} \:{when}\:{n}\rightarrow+\infty. \\ $$

Question Number 34716    Answers: 0   Comments: 1

calculate ∫∫_w x(√(x^2 +y^2 )) dxdy w ={(x,y)/ x^2 +y^2 ≤3 }

$${calculate}\:\int\int_{{w}} {x}\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:\:{dxdy} \\ $$$${w}\:=\left\{\left({x},{y}\right)/\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant\mathrm{3}\:\right\}\: \\ $$

Question Number 34715    Answers: 0   Comments: 0

calculate ∫∫_(0≤x≤y≤1) ((dxdy)/((x^2 +1)(y^2 +3))) .

$${calculate}\:\int\int_{\mathrm{0}\leqslant{x}\leqslant{y}\leqslant\mathrm{1}} \:\:\:\frac{{dxdy}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({y}^{\mathrm{2}} \:+\mathrm{3}\right)}\:. \\ $$

Question Number 34714    Answers: 0   Comments: 1

calculate ∫∫_(x^2 +2y^2 ≤1) (x^2 −y^2 )dxdy

$${calculate}\:\int\int_{{x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \:\leqslant\mathrm{1}} \left({x}^{\mathrm{2}} \:−{y}^{\mathrm{2}} \right){dxdy} \\ $$

Question Number 34713    Answers: 0   Comments: 1

let a>0 calculate ∫∫_(x^2 +y^2 ≤3) (1/(2 +x^2 +y^2 ))dxdy.

$${let}\:{a}>\mathrm{0}\:\:{calculate}\:\int\int_{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant\mathrm{3}} \:\frac{\mathrm{1}}{\mathrm{2}\:+{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdy}. \\ $$

Question Number 34707    Answers: 0   Comments: 2

given the sum of the first n terms of an A.P is n^2 the sum of of the first 2n terms of the same A.P is n^2 +n. show that the sum of the first 4n terms is 4n^2 −8n+4.

$$\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{terms}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{A}}.\boldsymbol{\mathrm{P}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{n}}^{\mathrm{2}} \:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\mathrm{2}\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\: \\ $$$$\boldsymbol{\mathrm{same}}\:\boldsymbol{\mathrm{A}}.\boldsymbol{\mathrm{P}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{n}}^{\mathrm{2}} +\boldsymbol{\mathrm{n}}. \\ $$$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}} \\ $$$$\mathrm{4}\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{is}}\:\mathrm{4}\boldsymbol{\mathrm{n}}^{\mathrm{2}} −\mathrm{8}\boldsymbol{\mathrm{n}}+\mathrm{4}. \\ $$

Question Number 34703    Answers: 1   Comments: 0

A man pushes a box of 40kg up an incline of 15°,if the man applies a horizontal force 200N and the box moves up the plane a distance of 20m at a constant velocity and the coefficient of friction is 0.1, find a)the workdone by the man on the box b)workdone against friction

$${A}\:{man}\:{pushes}\:{a}\:{box}\:{of}\:\mathrm{40}{kg}\:{up}\:{an} \\ $$$${incline}\:{of}\:\mathrm{15}°,{if}\:{the}\:{man}\:{applies} \\ $$$${a}\:{horizontal}\:{force}\:\mathrm{200}{N}\:{and}\:{the} \\ $$$${box}\:{moves}\:{up}\:{the}\:{plane}\:{a}\:{distance} \\ $$$${of}\:\mathrm{20}{m}\:{at}\:{a}\:{constant}\:{velocity}\:{and} \\ $$$${the}\:{coefficient}\:{of}\:{friction}\:{is}\:\mathrm{0}.\mathrm{1}, \\ $$$${find}\: \\ $$$$\left.{a}\right){the}\:{workdone}\:{by}\:{the}\:{man}\:{on}\:{the} \\ $$$${box} \\ $$$$\left.{b}\right){workdone}\:{against}\:{friction} \\ $$

Question Number 34699    Answers: 0   Comments: 2

let f(x)=e^(−x^2 ) ∫_0 ^x e^t^2 dt 1) find a d.e verified by f 2) developpf at integr serie.

$${let}\:{f}\left({x}\right)={e}^{−{x}^{\mathrm{2}} } \:\int_{\mathrm{0}} ^{{x}} \:{e}^{{t}^{\mathrm{2}} } {dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{d}.{e}\:{verified}\:{by}\:{f} \\ $$$$\left.\mathrm{2}\right)\:{developpf}\:{at}\:{integr}\:{serie}. \\ $$

Question Number 34698    Answers: 1   Comments: 2

let f(x)=e^x sinx .developp f at integr serie.

$${let}\:{f}\left({x}\right)={e}^{{x}} \:{sinx}\:\:.{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Question Number 34697    Answers: 0   Comments: 1

let f(x)=((ln(1+x))/(1+x)) developp f at integr serie

$${let}\:{f}\left({x}\right)=\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$

Question Number 34696    Answers: 0   Comments: 1

let f(x) =(√(2−x)) developp f at integr serie and give the radius of convergence.

$${let}\:{f}\left({x}\right)\:=\sqrt{\mathrm{2}−{x}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:{and}\:{give}\:{the}\:{radius}\:{of} \\ $$$${convergence}. \\ $$

Question Number 34695    Answers: 0   Comments: 0

let give U_n = {(1/n) Π_(k=1) ^n (α+k)}^(1/n) find lim_(n→+∞) U_n ?.

$${let}\:{give}\:{U}_{{n}} =\:\left\{\frac{\mathrm{1}}{{n}}\:\prod_{{k}=\mathrm{1}} ^{{n}} \:\left(\alpha+{k}\right)\right\}^{\frac{\mathrm{1}}{{n}}} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:{U}_{{n}} \:?. \\ $$

Question Number 34694    Answers: 0   Comments: 0

find lim_(n→+∞) Σ_(k=n) ^(2n−1) (1/(2k+1)) .

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\sum_{{k}={n}} ^{\mathrm{2}{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\:. \\ $$

Question Number 34693    Answers: 0   Comments: 0

let S_n = (1/(n(√n))) Σ_(k=1) ^n [(√k) ] find lim_(n→+∞) S_n

$${let}\:{S}_{{n}} =\:\frac{\mathrm{1}}{{n}\sqrt{{n}}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\left[\sqrt{{k}}\:\right] \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$

  Pg 1678      Pg 1679      Pg 1680      Pg 1681      Pg 1682      Pg 1683      Pg 1684      Pg 1685      Pg 1686      Pg 1687   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com