Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1682

Question Number 31977    Answers: 1   Comments: 2

find the value of Σ_(n=0) ^∞ (1/((2n+1)(2n+3)))

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$

Question Number 31976    Answers: 0   Comments: 0

let u_n =^(n+1) (√(n+1)) −^n (√n) find radius of convergence for Σ u_n z^n (z∈C).

$${let}\:{u}_{{n}} =^{{n}+\mathrm{1}} \sqrt{{n}+\mathrm{1}}\:−\:^{{n}} \sqrt{{n}}\:\:{find}\:{radius}\:{of}\:{convergence}\: \\ $$$${for}\:\:\Sigma\:{u}_{{n}} {z}^{{n}} \:\:\:\:\left({z}\in{C}\right). \\ $$

Question Number 31975    Answers: 0   Comments: 0

let u_n = ∫_1 ^∞ e^(−t^n ) dt 1) calculate lim_(n→∞) u_n 2)find a equivalent of u_n (n→∞) 3)find the radius of convergence of Σ u_n x^n .

$${let}\:{u}_{{n}} =\:\int_{\mathrm{1}} ^{\infty} \:\:{e}^{−{t}^{{n}} } \:{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{n}\rightarrow\infty} \:{u}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \:\left({n}\rightarrow\infty\right) \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{radius}\:{of}\:{convergence}\:{of}\:\Sigma\:{u}_{{n}} {x}^{{n}} . \\ $$

Question Number 31974    Answers: 0   Comments: 0

1)find I(p,q) = ∫_0 ^1 t^p (1−t)^q dt with pand q integrs 2) find the nature of Σ I_((n,n))

$$\left.\mathrm{1}\right){find}\:{I}\left({p},{q}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}^{{p}} \:\left(\mathrm{1}−{t}\right)^{{q}} \:{dt}\:\:{with}\:{pand}\:{q}\:{integrs} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{nature}\:{of}\:\Sigma\:\:{I}_{\left({n},{n}\right)} \\ $$

Question Number 31973    Answers: 0   Comments: 0

let give the sequence (u_n ) / u_0 =1 and u_1 =−1 and u_(n+2) = 2u_(n+1 ) −u_n .find the radius of convegence for this serie.

$${let}\:{give}\:{the}\:{sequence}\:\left({u}_{{n}} \right)\:\:/\:{u}_{\mathrm{0}} =\mathrm{1}\:{and}\:{u}_{\mathrm{1}} =−\mathrm{1}\:{and} \\ $$$${u}_{{n}+\mathrm{2}} =\:\mathrm{2}{u}_{{n}+\mathrm{1}\:} −{u}_{{n}} \:\:\:.{find}\:{the}\:{radius}\:{of}\:{convegence}\:{for} \\ $$$${this}\:{serie}. \\ $$

Question Number 31972    Answers: 0   Comments: 1

solve inside ]−1,1[ the d.e. (√(1−x^2 )) y^′ +y =e^(−2x) .

$$\left.{solve}\:{inside}\:\right]−\mathrm{1},\mathrm{1}\left[\:{the}\:{d}.{e}.\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{y}^{'} \:+{y}\:={e}^{−\mathrm{2}{x}} \:.\right. \\ $$

Question Number 31971    Answers: 0   Comments: 0

let consider the d.e. x(x−1)y^(′′) +3xy^′ +y =0 find a solution at form Σa_n x^n .

$${let}\:{consider}\:{the}\:{d}.{e}.\:{x}\left({x}−\mathrm{1}\right){y}^{''} \:+\mathrm{3}{xy}^{'} \:+{y}\:=\mathrm{0} \\ $$$${find}\:{a}\:{solution}\:{at}\:{form}\:\Sigma{a}_{{n}} {x}^{{n}} \:\:. \\ $$

Question Number 31970    Answers: 0   Comments: 0

find the nature of ∫_2 ^∞ (e^(−x) /(√(x^2 −4))) dx .

$${find}\:{the}\:{nature}\:{of}\:\:\int_{\mathrm{2}} ^{\infty} \:\:\frac{{e}^{−{x}} }{\sqrt{{x}^{\mathrm{2}} \:−\mathrm{4}}}\:{dx}\:. \\ $$

Question Number 31969    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ (((1+t^2 )/(1+t^4 )))arctant dt.

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\left(\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }\right){arctant}\:{dt}. \\ $$

Question Number 31968    Answers: 0   Comments: 0

find ∫_2 ^(√5) x(√((x−2)((√5)−x))) dx .

$${find}\:\:\:\int_{\mathrm{2}} ^{\sqrt{\mathrm{5}}} {x}\sqrt{\left({x}−\mathrm{2}\right)\left(\sqrt{\mathrm{5}}−{x}\right)}\:{dx}\:. \\ $$

Question Number 31967    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ ((arctanx)/(x^2 +x+1))dx .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctanx}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}{dx}\:. \\ $$

Question Number 31966    Answers: 0   Comments: 0

let give I_n = ∫_0 ^∞ (dt/((1+t^2 )^n )) with n integr and n≥1 1) prove the convergence of I_n 2)find lim_(n→∞) I_n 3) study the convergence of the serie Σ_(n=1) ^∞ (−1)^n I_n .

$${let}\:{give}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{{n}} }\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{convergence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow\infty} \:\:{I}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{convergence}\:{of}\:{the}\:{serie}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\:{I}_{{n}} \:. \\ $$

Question Number 31965    Answers: 0   Comments: 0

find the value of Σ_(n=1) ^∞ (((−1)^(n−1) −2^n )/n) x^n with ∣x∣ <(1/2)

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:−\mathrm{2}^{{n}} }{{n}}\:{x}^{{n}} \:\:{with}\:\mid{x}\mid\:<\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 31964    Answers: 0   Comments: 0

1)find S_n = Σ_(k=0) ^n C_n ^k sin((k/n)) 2) study the convergence of S_n

$$\left.\mathrm{1}\right){find}\:\:{S}_{{n}} \:\:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:{sin}\left(\frac{{k}}{{n}}\right) \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:{S}_{{n}} \\ $$

Question Number 31963    Answers: 0   Comments: 0

find Re (((1+e^(iα) )/(1+e^(iβ) ))) and Im ( ((1+e^(iα) )/(1+e^(iβ) )) ) .

$${find}\:{Re}\:\left(\frac{\mathrm{1}+{e}^{{i}\alpha} }{\mathrm{1}+{e}^{{i}\beta} }\right)\:{and}\:{Im}\:\left(\:\frac{\mathrm{1}+{e}^{{i}\alpha} }{\mathrm{1}+{e}^{{i}\beta} }\:\right)\:. \\ $$

Question Number 31962    Answers: 0   Comments: 0

let f(x)= (e^(2x) /(x+1)) 1) calculate f^((n)) (x) 2) find f^((n)) (o) and f^((n)) (1) .

$${let}\:{f}\left({x}\right)=\:\frac{{e}^{\mathrm{2}{x}} }{{x}+\mathrm{1}}\:\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left({o}\right)\:\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{1}\right)\:. \\ $$

Question Number 31961    Answers: 1   Comments: 0

Question Number 31960    Answers: 1   Comments: 0

Question Number 31959    Answers: 1   Comments: 0

Question Number 31957    Answers: 1   Comments: 1

Question Number 31954    Answers: 1   Comments: 0

Question Number 31953    Answers: 0   Comments: 2

If a, b, c, d are in GP, then (a^3 +b^3 )^(−1) , (b^3 +c^3 )^(−1) , (c^3 +a^3 )^(−1) are in

$$\mathrm{If}\:{a},\:{b},\:{c},\:{d}\:\mathrm{are}\:\mathrm{in}\:\mathrm{GP},\:\mathrm{then}\:\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} \right)^{−\mathrm{1}} ,\: \\ $$$$\left({b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)^{−\mathrm{1}} ,\:\left({c}^{\mathrm{3}} +{a}^{\mathrm{3}} \right)^{−\mathrm{1}} \:\mathrm{are}\:\mathrm{in} \\ $$

Question Number 31952    Answers: 0   Comments: 1

For a sequence < a_n > , a_1 = 2 and (a_(n+1) /a_n ) = (1/3) . Then Σ_(r=1) ^(20) a_r is

$$\mathrm{For}\:\mathrm{a}\:\mathrm{sequence}\:<\:{a}_{{n}} \:>\:\:,\:{a}_{\mathrm{1}} =\:\mathrm{2}\:\mathrm{and}\: \\ $$$$\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\:.\:\:\mathrm{Then}\:\underset{{r}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\:{a}_{{r}} \:\mathrm{is} \\ $$

Question Number 31951    Answers: 1   Comments: 0

Evaluate ∫sin (√x)dx

$${Evaluate}\:\int\mathrm{sin}\:\sqrt{{x}}{dx} \\ $$

Question Number 31949    Answers: 1   Comments: 0

Question Number 31946    Answers: 0   Comments: 0

Calculate Σ_(j≤k≤i) (−1)^k ((i),(k) ) ((k),(j) )

$$\mathrm{Calculate}\:\underset{{j}\leqslant{k}\leqslant{i}} {\Sigma}\:\left(−\mathrm{1}\right)^{{k}} \begin{pmatrix}{{i}}\\{{k}}\end{pmatrix}\begin{pmatrix}{{k}}\\{{j}}\end{pmatrix} \\ $$

  Pg 1677      Pg 1678      Pg 1679      Pg 1680      Pg 1681      Pg 1682      Pg 1683      Pg 1684      Pg 1685      Pg 1686   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com