Question and Answers Forum |
AllQuestion and Answers: Page 1682 |
find a polynome solution of the diifferencial equation y^(′′) +y =x^(12) . |
if tanA+tanB=P and AtanB=q express the value of cos(2A+3B) in terms of p and q. |
If the equation (p^2 −4)(p^2 −9)x^3 +[((p−2)/2)]x^2 +(p−4)(p−3)(p−2)x+{2p−1}=0. is satisfied by all values of x in (0,3] then sum of all possible integral values of ′p′ is ? {.} = fractional part function. [.]= greatest integer function. |
![]() |
9 |
Let a,b are positive real numbers such that a−b=10 , then the smallest value of the constant k for which (√((x^2 +ax))) − (√((x^2 +bx))) < k for all x>0 is ? |
Three forces of magnitude 6N,2N and 3N act on the same point on the north,south and west directions respectively. find the magnitude and direction of the resultant force. |
![]() |
![]() |
let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 1) find Γ^((n)) (x) with n∈ N^★ 2) calculate Γ(n +(3/2)) for n integr. |
![]() |
![]() |
express ((4t^2 −28)/(t^4 +t^2 −6)) as a partial fraction. |
let consider ψ(x)=((Γ^′ (x))/(Γ(x))) 1) prove that ∀ a>0 ∫_0 ^1 ψ(a+x)dx=ln(a) 2) prove that ∀ n∈ N^★ ∫_0 ^1 ψ(x)sin(2πnx)dx=−(π/2) |
let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt 1) find Γ(x+1) interms of Γ(x) with x>0 2)calculate Γ(n) for n ∈ N^★ 3)calculate Γ((3/2)) . |
let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 1) prove that Γ(x)Γ(1−x)= (π/(sin(πx))) 2) find the value of ∫_0 ^∞ e^(−x^2 ) dx . |
1)let f R→C 2π periodic even /f(x)=x ∀ x∈[0,π[ developp f at fourier serie 2) calculate Σ_(p=0) ^∞ (1/((2p+1)^2 )) . |
prove that Σ_(n=1) ^∞ (H_n /n^2 ) =2 ξ(3) with ξ(x) =Σ_(n=1) ^∞ (1/n^x ) and x>1. |
let a∈C and ∣a∣<1 prove that the function f(x)= Σ_(n=0) ^(+∞) (a^n /(x+n)) is?developpable at point 1 and the radius is r=1. |
find lim_(x→+∞) Σ_(n=1) ^∞ (1+(1/n))^n^2 (x^n /(n!)) . |
prove that ∫_0 ^1 (dx/(√(1−x^4 ))) = Σ_(n=0) ^∞ (C_(2n) ^n /(4^n (4n+1))) . |
developp at integr serie f(x)= ∫_0 ^(π/2) (dt/(√(1−x^2 sin^2 t))) . with ∣x∣<1 . |
find the value of Σ_(n=0) ^∞ (((−1)^n )/(4n+1)) . |
find the value of Σ_(n=0) ^∞ (((−1)^n )/(2n+3)). |
developp at integr serie f(x)= ∫_0 ^x sin(t^2 )dt . |
let F(x)= ∫_0 ^(π/2) ((arctan(xtant))/(tant)) dt find a simple form of f(x) . 2) find the value of ∫_0 ^(π/2) ((arctan(2tant))/(tant))dt . |
Pg 1677 Pg 1678 Pg 1679 Pg 1680 Pg 1681 Pg 1682 Pg 1683 Pg 1684 Pg 1685 Pg 1686 |