Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1682

Question Number 33977    Answers: 1   Comments: 0

find a polynome solution of the diifferencial equation y^(′′) +y =x^(12) .

findapolynomesolutionofthediifferencialequationy+y=x12.

Question Number 33969    Answers: 2   Comments: 0

if tanA+tanB=P and AtanB=q express the value of cos(2A+3B) in terms of p and q.

iftanA+tanB=PandAtanB=qexpressthevalueofcos(2A+3B)intermsofpandq.

Question Number 33944    Answers: 1   Comments: 0

If the equation (p^2 −4)(p^2 −9)x^3 +[((p−2)/2)]x^2 +(p−4)(p−3)(p−2)x+{2p−1}=0. is satisfied by all values of x in (0,3] then sum of all possible integral values of ′p′ is ? {.} = fractional part function. [.]= greatest integer function.

Iftheequation(p24)(p29)x3+[p22]x2+(p4)(p3)(p2)x+{2p1}=0.issatisfiedbyallvaluesofxin(0,3]thensumofallpossibleintegralvaluesofpis?{.}=fractionalpartfunction.[.]=greatestintegerfunction.

Question Number 33942    Answers: 1   Comments: 1

Question Number 33941    Answers: 0   Comments: 0

9

9

Question Number 33940    Answers: 3   Comments: 0

Let a,b are positive real numbers such that a−b=10 , then the smallest value of the constant k for which (√((x^2 +ax))) − (√((x^2 +bx))) < k for all x>0 is ?

Leta,barepositiverealnumberssuchthatab=10,thenthesmallestvalueoftheconstantkforwhich(x2+ax)(x2+bx)<kforallx>0is?

Question Number 33930    Answers: 1   Comments: 0

Three forces of magnitude 6N,2N and 3N act on the same point on the north,south and west directions respectively. find the magnitude and direction of the resultant force.

Threeforcesofmagnitude6N,2Nand3Nactonthesamepointonthenorth,southandwestdirectionsrespectively.findthemagnitudeanddirectionoftheresultantforce.

Question Number 33927    Answers: 0   Comments: 6

Question Number 33926    Answers: 0   Comments: 0

Question Number 33915    Answers: 2   Comments: 3

let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 1) find Γ^((n)) (x) with n∈ N^★ 2) calculate Γ(n +(3/2)) for n integr.

letΓ(x)=0tx1etdtwithx>01)findΓ(n)(x)withnN2)calculateΓ(n+32)fornintegr.

Question Number 33912    Answers: 0   Comments: 3

Question Number 33907    Answers: 0   Comments: 1

Question Number 33899    Answers: 2   Comments: 0

express ((4t^2 −28)/(t^4 +t^2 −6)) as a partial fraction.

express4t228t4+t26asapartialfraction.

Question Number 33897    Answers: 2   Comments: 0

let consider ψ(x)=((Γ^′ (x))/(Γ(x))) 1) prove that ∀ a>0 ∫_0 ^1 ψ(a+x)dx=ln(a) 2) prove that ∀ n∈ N^★ ∫_0 ^1 ψ(x)sin(2πnx)dx=−(π/2)

letconsiderψ(x)=Γ(x)Γ(x)1)provethata>001ψ(a+x)dx=ln(a)2)provethatnN01ψ(x)sin(2πnx)dx=π2

Question Number 33896    Answers: 3   Comments: 0

let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt 1) find Γ(x+1) interms of Γ(x) with x>0 2)calculate Γ(n) for n ∈ N^★ 3)calculate Γ((3/2)) .

letΓ(x)=0tx1etdt1)findΓ(x+1)intermsofΓ(x)withx>02)calculateΓ(n)fornN3)calculateΓ(32).

Question Number 33895    Answers: 3   Comments: 0

let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 1) prove that Γ(x)Γ(1−x)= (π/(sin(πx))) 2) find the value of ∫_0 ^∞ e^(−x^2 ) dx .

letΓ(x)=0tx1etdtwithx>01)provethatΓ(x)Γ(1x)=πsin(πx)2)findthevalueof0ex2dx.

Question Number 33894    Answers: 0   Comments: 1

1)let f R→C 2π periodic even /f(x)=x ∀ x∈[0,π[ developp f at fourier serie 2) calculate Σ_(p=0) ^∞ (1/((2p+1)^2 )) .

1)letfRC2πperiodiceven/f(x)=xx[0,π[developpfatfourierserie2)calculatep=01(2p+1)2.

Question Number 33892    Answers: 0   Comments: 1

prove that Σ_(n=1) ^∞ (H_n /n^2 ) =2 ξ(3) with ξ(x) =Σ_(n=1) ^∞ (1/n^x ) and x>1.

provethatn=1Hnn2=2ξ(3)withξ(x)=n=11nxandx>1.

Question Number 33891    Answers: 0   Comments: 1

let a∈C and ∣a∣<1 prove that the function f(x)= Σ_(n=0) ^(+∞) (a^n /(x+n)) is?developpable at point 1 and the radius is r=1.

letaCanda∣<1provethatthefunctionf(x)=n=0+anx+nis?developpableatpoint1andtheradiusisr=1.

Question Number 33890    Answers: 0   Comments: 0

find lim_(x→+∞) Σ_(n=1) ^∞ (1+(1/n))^n^2 (x^n /(n!)) .

findlimx+n=1(1+1n)n2xnn!.

Question Number 33889    Answers: 0   Comments: 0

prove that ∫_0 ^1 (dx/(√(1−x^4 ))) = Σ_(n=0) ^∞ (C_(2n) ^n /(4^n (4n+1))) .

provethat01dx1x4=n=0C2nn4n(4n+1).

Question Number 33888    Answers: 0   Comments: 0

developp at integr serie f(x)= ∫_0 ^(π/2) (dt/(√(1−x^2 sin^2 t))) . with ∣x∣<1 .

developpatintegrserief(x)=0π2dt1x2sin2t.withx∣<1.

Question Number 33887    Answers: 0   Comments: 0

find the value of Σ_(n=0) ^∞ (((−1)^n )/(4n+1)) .

findthevalueofn=0(1)n4n+1.

Question Number 33886    Answers: 0   Comments: 1

find the value of Σ_(n=0) ^∞ (((−1)^n )/(2n+3)).

findthevalueofn=0(1)n2n+3.

Question Number 33885    Answers: 0   Comments: 1

developp at integr serie f(x)= ∫_0 ^x sin(t^2 )dt .

developpatintegrserief(x)=0xsin(t2)dt.

Question Number 33884    Answers: 0   Comments: 1

let F(x)= ∫_0 ^(π/2) ((arctan(xtant))/(tant)) dt find a simple form of f(x) . 2) find the value of ∫_0 ^(π/2) ((arctan(2tant))/(tant))dt .

letF(x)=0π2arctan(xtant)tantdtfindasimpleformoff(x).2)findthevalueof0π2arctan(2tant)tantdt.

  Pg 1677      Pg 1678      Pg 1679      Pg 1680      Pg 1681      Pg 1682      Pg 1683      Pg 1684      Pg 1685      Pg 1686   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com