Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1682

Question Number 39142    Answers: 1   Comments: 0

F(x) = x^3 −9x^2 +24x+c=0 has three real and distinct roots α , β & γ . Q.1 → Possible value of c is : Q.2 → If [α]+[β]+[γ]= 8 then c is : Q.3 → If [α]+[β]+[γ]=7 then c is : Options for the above 3 Q. → a) (−20,−16) b) (−20,−18) c) (−18,−16) d) none of these. [.] = greatest integer function.

$$\mathrm{F}\left({x}\right)\:=\:{x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}} +\mathrm{24}{x}+{c}=\mathrm{0}\:{has}\:\mathrm{three} \\ $$$$\mathrm{real}\:\mathrm{and}\:\mathrm{distinct}\:\mathrm{roots}\:\alpha\:,\:\beta\:\&\:\gamma\:. \\ $$$$\mathrm{Q}.\mathrm{1}\:\rightarrow\:\mathrm{Possible}\:\mathrm{value}\:\mathrm{of}\:\mathrm{c}\:\mathrm{is}\:: \\ $$$$\mathrm{Q}.\mathrm{2}\:\rightarrow\:\mathrm{If}\:\left[\alpha\right]+\left[\beta\right]+\left[\gamma\right]=\:\mathrm{8}\:\mathrm{then}\:\mathrm{c}\:\mathrm{is}\:: \\ $$$$\mathrm{Q}.\mathrm{3}\:\rightarrow\:\mathrm{If}\:\left[\alpha\right]+\left[\beta\right]+\left[\gamma\right]=\mathrm{7}\:\mathrm{then}\:\mathrm{c}\:\mathrm{is}\:: \\ $$$$ \\ $$$$\mathrm{Options}\:\mathrm{for}\:\mathrm{the}\:\mathrm{above}\:\mathrm{3}\:\mathrm{Q}.\:\rightarrow \\ $$$$\left.\mathrm{a}\left.\right)\:\left(−\mathrm{20},−\mathrm{16}\right)\:\:\:\:\:\:\:\:\mathrm{b}\right)\:\left(−\mathrm{20},−\mathrm{18}\right) \\ $$$$\left.\mathrm{c}\left.\right)\:\left(−\mathrm{18},−\mathrm{16}\right)\:\:\:\:\:\:\:\:\:\mathrm{d}\right)\:\mathrm{none}\:\mathrm{of}\:\mathrm{these}. \\ $$$$ \\ $$$$\left[.\right]\:=\:\mathrm{greatest}\:\mathrm{integer}\:\mathrm{function}. \\ $$

Question Number 39135    Answers: 1   Comments: 2

calculate A(λ) = ∫_0 ^λ ((ln(x+(√(1+x^2 ))))/(√(1+x^2 ))) dx 2) calculate ∫_0 ^1 ((ln(x+(√(1+x^2 ))))/(√(1+x^2 )))dx

$${calculate}\:{A}\left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{\lambda} \:\:\:\frac{{ln}\left({x}+\sqrt{\left.\mathrm{1}+{x}^{\mathrm{2}} \right)}\right.}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}+\sqrt{\left.\mathrm{1}+{x}^{\mathrm{2}} \right)}\right.}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 39127    Answers: 0   Comments: 1

Given the lines l_1 : x + y = 5 and l_2 : y = 4x and l_3 ; 4x + y − 1 =0 show that l_(2 ) is perpendicular to l_3 . find the point coordinates if x + 2y = 5 is colliner to l_1

$${Given}\:{the}\:{lines} \\ $$$${l}_{\mathrm{1}} :\:\:{x}\:+\:{y}\:=\:\mathrm{5}\:{and}\:{l}_{\mathrm{2}} :\:{y}\:=\:\mathrm{4}{x} \\ $$$${and}\:{l}_{\mathrm{3}} ;\:\mathrm{4}{x}\:+\:{y}\:−\:\mathrm{1}\:=\mathrm{0} \\ $$$${show}\:{that}\:{l}_{\mathrm{2}\:} \:{is}\:{perpendicular} \\ $$$${to}\:{l}_{\mathrm{3}} . \\ $$$${find}\:{the}\:{point}\:{coordinates} \\ $$$${if}\:{x}\:+\:\mathrm{2}{y}\:=\:\mathrm{5}\:{is}\:{colliner}\:{to}\:{l}_{\mathrm{1}} \\ $$

Question Number 39144    Answers: 1   Comments: 0

f(x) = 3x^3 − 2x + k has factor (x − 1) find the value of k. with these value evaluate a) (d/(dx ))(f(x)_ ) b) ∫_5 ^2 (f(x))

$${f}\left({x}\right)\:=\:\mathrm{3}{x}^{\mathrm{3}} \:−\:\mathrm{2}{x}\:+\:{k}\:{has}\: \\ $$$${factor}\:\left({x}\:−\:\mathrm{1}\right)\:\: \\ $$$${find}\:{the}\:{value}\:{of}\:{k}. \\ $$$${with}\:{these}\:{value}\: \\ $$$${evaluate} \\ $$$$\left.{a}\right)\:\frac{{d}}{{dx}\:}\left({f}\left({x}\right)_{} \right) \\ $$$$\left.{b}\right)\:\int_{\mathrm{5}} ^{\mathrm{2}} \left({f}\left({x}\right)\right) \\ $$

Question Number 39121    Answers: 0   Comments: 5

Find domain of (1+(1/x))^x ? Also prove thatL_(x→0^+ ) (1+(1/x))^x = 1 ?

$$\mathrm{Find}\:\mathrm{domain}\:\mathrm{of}\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \:? \\ $$$$\mathrm{Also}\:\mathrm{prove}\:\mathrm{that}\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{L}}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \:=\:\mathrm{1}\:? \\ $$

Question Number 39120    Answers: 1   Comments: 1

let A_n = ∫_1 ^n (([(√(1+x^2 ))] −[x])/x^2 ) dx (n integr ≥1) 1) calculate A_n 2) find lim_(n→+∞) A_n

$${let}\:{A}_{{n}} =\:\int_{\mathrm{1}} ^{{n}} \:\frac{\left[\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right]\:−\left[{x}\right]}{{x}^{\mathrm{2}} }\:{dx}\:\:\left({n}\:{integr}\:\geqslant\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \: \\ $$

Question Number 39119    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) ((x^2 cos(4x))/((x^2 +1)^2 ))dx

$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} \:{cos}\left(\mathrm{4}{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 39104    Answers: 1   Comments: 1

Question Number 39089    Answers: 2   Comments: 1

Question Number 39078    Answers: 1   Comments: 2

Without using l′hopital find lim_(x→3) ((√(9−x^2 ))/(x−3))

$$\boldsymbol{{Without}}\:\boldsymbol{{using}}\:\boldsymbol{{l}}'\boldsymbol{{hopital}} \\ $$$$\boldsymbol{{find}}\:\:\:\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{9}−\boldsymbol{{x}}^{\mathrm{2}} }}{\boldsymbol{{x}}−\mathrm{3}} \\ $$$$ \\ $$

Question Number 39072    Answers: 2   Comments: 1

Question Number 39067    Answers: 2   Comments: 7

Question Number 39059    Answers: 1   Comments: 0

Question Number 39058    Answers: 1   Comments: 1

Question Number 39055    Answers: 1   Comments: 0

Question Number 39040    Answers: 0   Comments: 0

find F(x) = ∫_0 ^π ln(x^2 −2x sin(2θ) +1)dθ .

$${find}\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left({x}^{\mathrm{2}} \:−\mathrm{2}{x}\:{sin}\left(\mathrm{2}\theta\right)\:+\mathrm{1}\right){d}\theta\:. \\ $$

Question Number 39039    Answers: 0   Comments: 2

let f(x) =(1/(1+∣sinx∣)) (2π periodic even) developp f at fourier serie .

$${let}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+\mid{sinx}\mid}\:\:\:\left(\mathrm{2}\pi\:{periodic}\:{even}\right) \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$

Question Number 39038    Answers: 0   Comments: 2

let f(z) = (z/(z^2 −z+2)) developp f at integr serie.

$${let}\:{f}\left({z}\right)\:=\:\frac{{z}}{{z}^{\mathrm{2}} \:−{z}+\mathrm{2}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Question Number 39037    Answers: 0   Comments: 2

calculate F(x)=∫_0 ^(2π) ((cos(4t))/(x^2 −2x cost +1)) dt

$$\:{calculate}\:\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left(\mathrm{4}{t}\right)}{{x}^{\mathrm{2}} \:−\mathrm{2}{x}\:{cost}\:+\mathrm{1}}\:{dt} \\ $$

Question Number 39035    Answers: 0   Comments: 1

find f(t) =∫_0 ^∞ sin(x)e^(−t [x]) dx with t>0

$${find}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:{sin}\left({x}\right){e}^{−{t}\:\left[{x}\right]} {dx}\:\:\:{with}\:{t}>\mathrm{0} \\ $$

Question Number 39034    Answers: 0   Comments: 1

calculate interms of n A_n = ∫_0 ^(2π) ((cos(nx))/(cosx +sinx))dx and B_n = ∫_0 ^(2π) ((sin(nx))/(cosx +sinx))dx .

$${calculate}\:{interms}\:{of}\:{n} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left({nx}\right)}{{cosx}\:+{sinx}}{dx}\:\:{and}\:{B}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{sin}\left({nx}\right)}{{cosx}\:+{sinx}}{dx}\:. \\ $$

Question Number 39033    Answers: 0   Comments: 2

calculate ∫_(−∞) ^(+∞) ((xsin(2x))/((1+x^2 )^2 ))dx

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{xsin}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$

Question Number 39032    Answers: 1   Comments: 0

x+y=3 x=2 y=?

$${x}+{y}=\mathrm{3} \\ $$$${x}=\mathrm{2} \\ $$$${y}=? \\ $$

Question Number 39028    Answers: 1   Comments: 0

1) calculate A=cos((π/7)).cos(((2π)/7)).cos(((3π)/7)) 2) calculate B =tan((π/7)).tan(((2π)/7)).tan(((3π)/7)).

$$\left.\mathrm{1}\right)\:{calculate}\:\:{A}={cos}\left(\frac{\pi}{\mathrm{7}}\right).{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right).{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{B}\:={tan}\left(\frac{\pi}{\mathrm{7}}\right).{tan}\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right).{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right). \\ $$

Question Number 39026    Answers: 2   Comments: 0

find the roots of 8x^3 −4x−1 =0

$${find}\:{the}\:{roots}\:{of}\:\:\mathrm{8}{x}^{\mathrm{3}} \:−\mathrm{4}{x}−\mathrm{1}\:=\mathrm{0} \\ $$

Question Number 39025    Answers: 0   Comments: 1

let f(x)= ((cos(αx))/(cosx)) (2π periodic even) developp f at fourier serie.

$${let}\:{f}\left({x}\right)=\:\frac{{cos}\left(\alpha{x}\right)}{{cosx}}\:\:\:\:\left(\mathrm{2}\pi\:{periodic}\:{even}\right) \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$

  Pg 1677      Pg 1678      Pg 1679      Pg 1680      Pg 1681      Pg 1682      Pg 1683      Pg 1684      Pg 1685      Pg 1686   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com