Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1681
Question Number 39380 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}+\mathrm{1}} \\ $$
Question Number 39379 Answers: 1 Comments: 6
Question Number 39378 Answers: 0 Comments: 1
$${study}\:{the}\:{derivability}\:{of} \\ $$$${f}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{nx}\:+\mathrm{1}} \\ $$
Question Number 39376 Answers: 0 Comments: 0
$${how}\:{to}\:{calculate}\:{the}\:{product}\:\left(\sum_{{n}=\mathrm{0}} ^{\infty} {a}_{{n}} {x}^{{n}} \right).\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{b}_{{n}} \:{x}^{\mathrm{2}{n}} \right)? \\ $$
Question Number 39375 Answers: 0 Comments: 1
Question Number 39374 Answers: 0 Comments: 2
$${calculate}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 39373 Answers: 0 Comments: 1
$${find}\:{the}\:{values}\:{of}\:{integrals} \\ $$$${A}\:=\:\int_{−\infty} ^{+\infty} \:{cos}\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right){dx}\:\:\:{and}\:{B}\:=\:\int_{−\infty} ^{+\infty} \:{sin}\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right){dx} \\ $$
Question Number 39371 Answers: 2 Comments: 1
Question Number 39370 Answers: 0 Comments: 1
$${let}\:{I}\:\left(\lambda\right)\:=\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\lambda{x}\right)}{\left(\mathrm{1}+{ix}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:\:{extract}\:{Re}\left({I}\left(\lambda\right)\right)\:{and}\:{Im}\left({I}\left(\lambda\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}\left(\lambda\right) \\ $$$$\left.\mathrm{3}\right)\:{conclude}\:\:{the}\:{values}\:{of}\:{Re}\left({I}\left(\lambda\right)\right)\:{and}\:{Im}\left({I}\left(\lambda\right)\right). \\ $$
Question Number 39369 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{calculate}\:{F}\left({x}\right)=\:\int_{\mathrm{1}} ^{\sqrt{{x}}} \:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\mathrm{2}} }{dt}\:\:\:{with}\:{x}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\:{A}_{{n}} =\:\int_{\mathrm{1}} ^{\sqrt{{n}}} \:\:\frac{{arctan}\left({t}\right)}{{t}^{\mathrm{2}} }\:{dt}\:\:{and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 39368 Answers: 0 Comments: 1
$${let}\:{F}\left({t}\right)=\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{e}^{−{tx}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} {dx}\:\:{witht}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{caculate}\:\:\frac{{dF}}{{dt}}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{F}\left({t}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx}\:}. \\ $$
Question Number 39365 Answers: 0 Comments: 1
Question Number 39357 Answers: 0 Comments: 0
$$\int\:\frac{\mathrm{1}}{{xln}\left({x}+\mathrm{1}\right)}\:{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 39349 Answers: 1 Comments: 1
Question Number 39346 Answers: 0 Comments: 2
Question Number 39342 Answers: 1 Comments: 0
$$\mathrm{Let}\:\mathrm{f}\left({x}\right)\:=\:\int_{\mathrm{0}\:} ^{\mathrm{2}} \:\mid{x}−{t}\mid\:\mathrm{dt}\:\left({x}>\mathrm{0}\right)\:,\:\mathrm{then} \\ $$$$\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left({x}\right)\:\mathrm{is}\:? \\ $$
Question Number 39341 Answers: 0 Comments: 4
$$\mathrm{I}_{\mathrm{1}} =\:\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{sin}\:\mathrm{884}{x}\:\mathrm{sin}\:\mathrm{1122}{x}}{\mathrm{sin}\:{x}}\:{dx} \\ $$$$\mathrm{I}_{\mathrm{2}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{238}} \left({x}^{\mathrm{1768}} −\mathrm{1}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)}\:{dx} \\ $$$${then}\:{value}\:{of}\:\frac{\mathrm{I}_{\mathrm{1}} }{\mathrm{I}_{\mathrm{2}} }\:=? \\ $$
Question Number 39338 Answers: 2 Comments: 2
$$\mathrm{If}\:\mathrm{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{4}} \:\mathrm{e}^{\mid\mathrm{t}−{x}\mid} \:\mathrm{dt}\:\:\:\:\left(\mathrm{0}\leqslant{x}\leqslant\mathrm{4}\right), \\ $$$$\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left({x}\right)\:\mathrm{is}\:=\:? \\ $$
Question Number 39336 Answers: 0 Comments: 5
Question Number 39337 Answers: 0 Comments: 0
$${tan}^{−\mathrm{1}} \:\mathrm{2}\:+\:{tan}^{−\mathrm{1}} \:\mathrm{3}={cosec}^{−\mathrm{1}} {x}\:\:,{then} \\ $$$${x}\:\:{is}\:\:{equal}\:\:{to} \\ $$$$\:\left({a}\right)\:\:\:\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({b}\right)\:\:\sqrt{\mathrm{2}}\:\: \\ $$$$\left({d}\right)\:−\sqrt{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({d}\right)\:{none}\:{of}\:{these} \\ $$
Question Number 39332 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{simplify}\:{S}_{{n}} \left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:{sin}^{\mathrm{2}} \left({kx}\right) \\ $$$$\left.\mathrm{2}\right){simplify}\:\:{A}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right) \\ $$
Question Number 39404 Answers: 1 Comments: 7
Question Number 39312 Answers: 5 Comments: 0
$${prove}\:{that} \\ $$$$\left({tan}\:\mathrm{4}{a}+{tan}\:\mathrm{2}{a}\right)\left(\mathrm{1}−{tan}^{\mathrm{2}} \mathrm{3}{a}\:{tan}^{\mathrm{2}} {a}\right)=\mathrm{2}{tan}\:\mathrm{3}{a}\:{sec}^{\mathrm{2}} {a} \\ $$
Question Number 39303 Answers: 1 Comments: 1
Question Number 39300 Answers: 1 Comments: 0
Question Number 39298 Answers: 0 Comments: 0
Pg 1676 Pg 1677 Pg 1678 Pg 1679 Pg 1680 Pg 1681 Pg 1682 Pg 1683 Pg 1684 Pg 1685
Terms of Service
Privacy Policy
Contact: info@tinkutara.com