Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1678

Question Number 32237    Answers: 0   Comments: 0

Question Number 32236    Answers: 1   Comments: 0

Question Number 32233    Answers: 0   Comments: 1

A particle id moving in a circular path of radius a with constant velocity v.The center of cirvle marked by C.The angular momentum from the origin is.

$${A}\:{particle}\:{id}\:{moving}\:{in}\:{a}\:{circular} \\ $$$${path}\:{of}\:{radius}\:{a}\:{with}\:{constant} \\ $$$${velocity}\:{v}.{The}\:{center}\:{of}\:{cirvle} \\ $$$${marked}\:{by}\:{C}.{The}\:{angular}\:{momentum} \\ $$$${from}\:{the}\:{origin}\:{is}. \\ $$

Question Number 32220    Answers: 0   Comments: 3

Find the value of a for which the equation sin^4 x+asin^2 x+1=0 will have a solution.

$${Find}\:{the}\:{value}\:{of}\:{a}\:{for}\:{which}\:{the}\:{equation} \\ $$$$\mathrm{sin}\:^{\mathrm{4}} {x}+{a}\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{1}=\mathrm{0}\:{will}\:{have}\:{a}\:{solution}. \\ $$

Question Number 32218    Answers: 1   Comments: 0

Question Number 32209    Answers: 1   Comments: 0

a boy rides his bicycle 10km at an average speed of 12 km/hr. and again travel 12 km at an average speed of 10 km/hr his average speed for dntire trip is approximately a)10.4km/hr b)10.8km/hr c)12.2km/hr d)11.2km/hr

$${a}\:{boy}\:{rides}\:{his}\:{bicycle}\:\mathrm{10}{km}\:{at}\:{an}\:{average}\:{speed}\:{of}\:\mathrm{12}\:{km}/{hr}. \\ $$$${and}\:{again}\:{travel}\:\mathrm{12}\:{km}\:{at}\:{an}\:{average}\:{speed}\:{of}\:\mathrm{10}\:{km}/{hr} \\ $$$${his}\:{average}\:{speed}\:{for}\:{dntire}\:{trip}\:{is}\:{approximately} \\ $$$$\left.{a}\right)\mathrm{10}.\mathrm{4}{km}/{hr} \\ $$$$\left.{b}\right)\mathrm{10}.\mathrm{8}{km}/{hr} \\ $$$$\left.{c}\right)\mathrm{12}.\mathrm{2}{km}/{hr} \\ $$$$\left.{d}\right)\mathrm{11}.\mathrm{2}{km}/{hr} \\ $$

Question Number 32208    Answers: 0   Comments: 0

Question Number 32207    Answers: 0   Comments: 0

mi servirebbe aiuto per capire come si puo ruotare la vista del sofware per un ragazzo DISABILE. Grazie.

$${mi}\:{servirebbe}\:{aiuto}\:{per}\:{capire}\:{come}\:{si}\:{puo}\:{ruotare}\: \\ $$$${la}\:{vista}\:{del}\:{sofware}\:{per}\:{un}\:{ragazzo}\:{DISABILE}.\:{Grazie}. \\ $$$$ \\ $$$$ \\ $$

Question Number 32206    Answers: 0   Comments: 0

Find Σ_(k=1) ^∞ (∫_(k−1) ^k x^(−x) dx) .

$$\mathrm{Find}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\underset{\mathrm{k}−\mathrm{1}} {\overset{\mathrm{k}} {\int}}\mathrm{x}^{−\mathrm{x}} \:\mathrm{dx}\right)\:. \\ $$$$ \\ $$

Question Number 32203    Answers: 0   Comments: 5

Number of solutions of the equation z^3 +(([3(z^− )^2 ])/(∣z∣))=0 where z is a complex no.

$$\boldsymbol{{N}}{umber}\:{of}\:{solutions}\:{of}\:{the}\:{equation} \\ $$$${z}^{\mathrm{3}} +\frac{\left[\mathrm{3}\left(\overset{−} {{z}}\right)^{\mathrm{2}} \right]}{\mid{z}\mid}=\mathrm{0}\:{where}\:{z}\:{is}\:{a}\:{complex}\:{no}. \\ $$

Question Number 32191    Answers: 1   Comments: 1

Question Number 32211    Answers: 1   Comments: 1

Question Number 32184    Answers: 1   Comments: 0

If one vertex of the triangle having maximum area that can be inscribed in the circle ∣z−i∣=5 is 3−3i, then find other vertices of triangle.

$$\boldsymbol{{I}}{f}\:{one}\:{vertex}\:{of}\:{the}\:{triangle}\:{having} \\ $$$${maximum}\:{area}\:{that}\:{can}\:{be}\:{inscribed} \\ $$$${in}\:{the}\:{circle}\:\mid\boldsymbol{{z}}−\boldsymbol{{i}}\mid=\mathrm{5}\:{is}\:\mathrm{3}−\mathrm{3}\boldsymbol{{i}},\:{then} \\ $$$${find}\:{other}\:{vertices}\:{of}\:{triangle}. \\ $$

Question Number 32181    Answers: 1   Comments: 1

Intercept made by the circle zz^− +a^− z+az^− +r=0 on the real axis on complex plane is :−

$$\boldsymbol{{I}}{ntercept}\:{made}\:{by}\:{the}\:{circle}\: \\ $$$$\boldsymbol{{z}}\overset{−} {\boldsymbol{{z}}}+\overset{−} {\boldsymbol{{a}z}}+\boldsymbol{{a}}\overset{−} {\boldsymbol{{z}}}+\boldsymbol{{r}}=\mathrm{0}\:\boldsymbol{{o}}{n}\:{the}\:{real}\:{axis}\:{on} \\ $$$${complex}\:{plane}\:{is}\::− \\ $$

Question Number 32163    Answers: 0   Comments: 0

If the corrdinater of the verticle of an eqvilateral triangle with length x are (x_(1+) y_1 ),(y_1 +y_2 ) and (x_3 ,y_3 ) then ( determinant (((x_1 y_1 2)),((x_2 y_2 2)),((x_3 y_3 2))))^2 =3a^4 ?

$${If}\:{the}\:{corrdinater}\:{of}\:{the}\:{verticle}\:{of}\:{an} \\ $$$${eqvilateral}\:{triangle}\:{with}\:{length}\:{x}\:{are} \\ $$$$\left({x}_{\mathrm{1}+} {y}_{\mathrm{1}} \right),\left({y}_{\mathrm{1}} +{y}_{\mathrm{2}} \right)\:{and}\:\left({x}_{\mathrm{3}} ,{y}_{\mathrm{3}} \right)\:{then} \\ $$$$\left(\begin{vmatrix}{{x}_{\mathrm{1}} \:\:\:{y}_{\mathrm{1}} \:\:\:\mathrm{2}}\\{{x}_{\mathrm{2}} \:\:\:{y}_{\mathrm{2}} \:\:\:\mathrm{2}}\\{{x}_{\mathrm{3}} \:\:\:{y}_{\mathrm{3}} \:\:\:\mathrm{2}}\end{vmatrix}\right)^{\mathrm{2}} =\mathrm{3}{a}^{\mathrm{4}} ? \\ $$

Question Number 32161    Answers: 1   Comments: 0

Let a function F :R→R be defined by f(x)=1+ax,α≠ 0 for all X ∈ R. Show that f is invertible and find its inverse function.Also find the value (s) of α if inverse of f is itself

$${Let}\:{a}\:{function}\:{F}\::{R}\rightarrow{R}\:{be}\:{defined}\:{by} \\ $$$${f}\left({x}\right)=\mathrm{1}+{ax},\alpha\neq\:\mathrm{0}\:{for}\:{all}\:{X}\:\in\:{R}.\:{Show} \\ $$$${that}\:{f}\:{is}\:{invertible}\:{and}\:{find}\:{its}\:{inverse} \\ $$$${function}.{Also}\:{find}\:{the}\:{value}\:\left({s}\right)\:{of}\:\alpha \\ $$$${if}\:{inverse}\:{of}\:{f}\:{is}\:{itself} \\ $$

Question Number 32160    Answers: 1   Comments: 0

If z=cosθ+isinθ is a root of equation a_0 z^n +a_1 z^(n−1) +a_2 z^(n−2) +.....+a_(n−1) z+a_n =0 then prove that: i) a_0 +a_1 cos θ+a_2 cos 2θ+.....+a_n cos nθ=0 ii) a_1 sin θ + a_2 sin 2θ+....+a_n sin nθ=0.

$$\boldsymbol{{I}}{f}\:{z}={cos}\theta+{isin}\theta\:{is}\:{a}\:{root}\:{of}\:{equation} \\ $$$${a}_{\mathrm{0}} {z}^{{n}} +{a}_{\mathrm{1}} {z}^{{n}−\mathrm{1}} +{a}_{\mathrm{2}} {z}^{{n}−\mathrm{2}} +.....+{a}_{{n}−\mathrm{1}} {z}+{a}_{{n}} =\mathrm{0} \\ $$$${then}\:{prove}\:{that}: \\ $$$$\left.{i}\right)\:{a}_{\mathrm{0}} +{a}_{\mathrm{1}} \mathrm{cos}\:\theta+{a}_{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\theta+.....+{a}_{{n}} \mathrm{cos}\:{n}\theta=\mathrm{0} \\ $$$$\left.{ii}\right)\:{a}_{\mathrm{1}} \mathrm{sin}\:\theta\:+\:{a}_{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta+....+{a}_{{n}} \mathrm{sin}\:{n}\theta=\mathrm{0}. \\ $$

Question Number 32159    Answers: 1   Comments: 2

Express the following in a+ib form: (((cos x+isin x)(cos y+isin y))/((cosa+isin a)(cosb+isinb))).

$$\boldsymbol{{E}}{xpress}\:{the}\:{following}\:{in}\:{a}+{ib}\:{form}: \\ $$$$\frac{\left(\mathrm{cos}\:{x}+{i}\mathrm{sin}\:{x}\right)\left(\mathrm{cos}\:{y}+{i}\mathrm{sin}\:{y}\right)}{\left({cosa}+{i}\mathrm{sin}\:{a}\right)\left({cosb}+{isinb}\right)}. \\ $$

Question Number 32158    Answers: 0   Comments: 0

an elevator of mass 250kg is carrying 3 person whose masses 60kg, 80kg, 100kg and the force exacted by the motion is 5000N. a) With what acceleration will the elevator ascend b) Starting from rest,how far will it go in 5s. (acceleration to gravity G=9.8ms^(−2) ).

$${an}\:{elevator}\:{of}\:{mass}\:\mathrm{250}{kg}\:{is}\:{carrying}\:\mathrm{3}\:{person}\:{whose}\:{masses}\:\mathrm{60}{kg},\:\mathrm{80}{kg},\:\mathrm{100}{kg}\:{and}\:{the}\:{force}\:{exacted}\:{by}\:{the}\:{motion}\:{is}\:\mathrm{5000}{N}. \\ $$$$\left.{a}\right)\:{With}\:{what}\:{acceleration}\:{will}\:{the}\:{elevator}\:{ascend} \\ $$$$\left.{b}\right)\:{Starting}\:{from}\:{rest},{how}\:{far}\:{will}\:{it}\:{go}\:{in}\:\mathrm{5}{s}. \\ $$$$\left({acceleration}\:{to}\:{gravity}\:{G}=\mathrm{9}.\mathrm{8}{ms}^{−\mathrm{2}} \right). \\ $$

Question Number 32164    Answers: 0   Comments: 0

Determine wether the relation on the set R of all real number as R={(a,b):a,b∈R and a−b +(√3) ∈ s where s is the set of all irrational no) is reflexive, symmetric and transitive?

$${Determine}\:{wether}\:{the}\:{relation}\:{on}\:{the} \\ $$$${set}\:{R}\:{of}\:{all}\:{real}\:{number}\:{as} \\ $$$${R}=\left\{\left({a},{b}\right):{a},{b}\in{R}\:{and}\:{a}−{b}\:+\sqrt{\mathrm{3}}\:\in\:{s}\:\right. \\ $$$$\left.{where}\:{s}\:{is}\:{the}\:{set}\:{of}\:{all}\:{irrational}\:{no}\right) \\ $$$${is}\:{reflexive},\:{symmetric}\:{and}\:{transitive}? \\ $$

Question Number 32156    Answers: 0   Comments: 2

evaluate∫((√(cos 2x))/(sin x))dx

$${evaluate}\int\frac{\sqrt{{cos}\:\mathrm{2}{x}}}{{sin}\:{x}}{dx} \\ $$

Question Number 32142    Answers: 0   Comments: 0

Question Number 32150    Answers: 0   Comments: 0

Question Number 32139    Answers: 0   Comments: 4

Find the ∫ ((x+1)/(x^2 +x+1))dx

$${F}\boldsymbol{{ind}}\:\boldsymbol{{the}} \\ $$$$\int\:\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$

Question Number 32137    Answers: 0   Comments: 0

lim_(x→5) ((f(x)g(x) − 3g(x) − 3)/(f(x) − 3(x − 5))) = 0 Find the value of g′(5)

$$\underset{{x}\rightarrow\mathrm{5}} {\mathrm{lim}}\:\frac{{f}\left({x}\right){g}\left({x}\right)\:−\:\mathrm{3}{g}\left({x}\right)\:−\:\mathrm{3}}{{f}\left({x}\right)\:−\:\mathrm{3}\left({x}\:−\:\mathrm{5}\right)}\:=\:\mathrm{0} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{g}'\left(\mathrm{5}\right) \\ $$

Question Number 32132    Answers: 0   Comments: 0

∫(1/((x+1)ln(x)))dx=?

$$\int\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right){ln}\left({x}\right)}{dx}=? \\ $$

  Pg 1673      Pg 1674      Pg 1675      Pg 1676      Pg 1677      Pg 1678      Pg 1679      Pg 1680      Pg 1681      Pg 1682   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com