Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1678
Question Number 35244 Answers: 0 Comments: 1
$${if}\:\:{y}=\frac{{sin}^{−\mathrm{1}} {x}}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:{show}\:{that}\: \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\frac{{dy}}{{dx}}\:−{xy}=\mathrm{1} \\ $$
Question Number 35242 Answers: 1 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{xdx}}{\mathrm{1}+{sinx}} \\ $$
Question Number 35241 Answers: 2 Comments: 6
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{x}\:{dx}}{\mathrm{3}\:+{cosx}}\:\:. \\ $$
Question Number 35238 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{−\mathrm{3}{x}} \:−{e}^{−\mathrm{2}{x}} }{{x}^{\mathrm{2}} }{dx}\: \\ $$
Question Number 35237 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}} \:−{e}^{−{x}^{\mathrm{2}} } }{{x}}{dx}\:. \\ $$
Question Number 35236 Answers: 0 Comments: 0
$${letf}\left({x}\right)={arctan}\left(\mathrm{1}+{ix}\right)\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${developp}\:{f}\:\:{at}\:{integr}\:{serie}. \\ $$
Question Number 35235 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)=\:{e}^{−\mathrm{2}{x}} \:{arctanx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Question Number 35234 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:={e}^{−{x}^{{n}} } \:\:\:\:\:{with}\:{n}\:{fromN} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 35232 Answers: 0 Comments: 0
$${what}\:{is}\:{the}\:{value}\:{of}\:{cos}\:{z}\:{and}\:{sinz} \\ $$$${if}\:{z}={re}^{{i}\theta} \:\:\:\:{r}>\mathrm{0}\:\:? \\ $$
Question Number 35231 Answers: 0 Comments: 1
$${what}\:{is}\:{the}\:{value}\:{of}\:{cos}\left(\mathrm{1}+{i}\right)\:{and} \\ $$$${cos}\left(\mathrm{1}−{i}\right)? \\ $$
Question Number 35229 Answers: 1 Comments: 2
$${find}\:{the}\:{value}\:{of}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\mathrm{2}+{ia}\right)^{\mathrm{2}} {t}^{\mathrm{2}} } {dt}\:\:\:\:{with}\:{a}\:{from}\:{R}\:\:\:\:\mid{a}\mid<\mathrm{1}. \\ $$
Question Number 35228 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{px}} \:\:\:\frac{{sin}\left({qx}\right)}{\sqrt{{x}}}{dx}\:\:{with}\:{p}>\mathrm{0}\:{and}\:{q}>\mathrm{0} \\ $$
Question Number 35226 Answers: 0 Comments: 4
$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\:\frac{{dx}}{{a}\:{sin}^{\mathrm{2}} {x}\:\:+{cos}^{\mathrm{2}} {x}} \\ $$$${with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{g}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{sin}^{\mathrm{2}} {x}}{\left({a}\:{sin}^{\mathrm{2}} {x}\:+{cos}^{\mathrm{2}} {x}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 35225 Answers: 0 Comments: 4
$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dt}}{{a}\:{cos}^{\mathrm{2}} {t}\:+\:{sin}^{\mathrm{2}} {t}}\:{with}\:{a}\neq\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{g}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}^{\mathrm{2}} {t}}{\left({a}\:{cos}^{\mathrm{2}} {t}\:+{sin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }{dt}\: \\ $$
Question Number 35224 Answers: 1 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{\mathrm{1}+\mathrm{2}{cost}}{\mathrm{5}+\mathrm{4}{cost}}{dt} \\ $$
Question Number 35223 Answers: 1 Comments: 0
$${what}\:{is}\:{the}\:{value}\:{of}\:{cos}\left({i}+{j}\right)\:{with}\:{i}^{\mathrm{2}} =−\mathrm{1}\:{and} \\ $$$${j}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:? \\ $$
Question Number 35222 Answers: 1 Comments: 1
$${let}\:\mid{x}\mid<\mathrm{1}\:{prove}\:{that}\: \\ $$$${arctanx}\:=\frac{{i}}{\mathrm{2}}{ln}\left(\frac{{i}+{x}}{{i}−{x}}\right) \\ $$
Question Number 35221 Answers: 0 Comments: 0
$${let}\:{z}\:{from}\:{C}\:{prove}\:{that} \\ $$$${e}^{{z}} \:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{z}^{{n}} }{{n}!}\:. \\ $$
Question Number 35220 Answers: 0 Comments: 1
$${let}\:{z}\:{from}\:{C}\:{and}\:{f}\left({z}\right)=\:\frac{\mathrm{2}{z}}{\left({z}−\mathrm{1}\right)\left(\mathrm{2}{z}\:+\mathrm{1}\right)} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 35219 Answers: 0 Comments: 0
$${let}\:{z}\:\in{C}\:\:{prove}\:{that} \\ $$$${cosz}\:={ch}\left({iz}\right)\:{and}\:{sinz}={sh}\left({iz}\right) \\ $$
Question Number 35218 Answers: 0 Comments: 0
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\frac{\pi}{{sin}\left(\pi{a}\right)} \\ $$$${that}\:{we}\:{know}\:\mathrm{0}<{a}<\mathrm{1}\:. \\ $$
Question Number 35217 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$
Question Number 35216 Answers: 0 Comments: 0
$${study}\:{the}\:{function}\: \\ $$$${f}_{{n}} \left({x}\right)={arcos}\left({ncosx}\right)\:{n}\geqslant\mathrm{1}\:{integr}. \\ $$
Question Number 35215 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cosx}\:+{cos}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$
Question Number 35214 Answers: 0 Comments: 0
$${let}\:{a}>\mathrm{0}\:\:{b}\:\in{C}\:{and}\:{Re}\left({b}\right)>\mathrm{0} \\ $$$${cslculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{iax}} }{{x}−{ib}}{dx}\:\:{and}\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{iax}} }{{x}+{ib}}{dx} \\ $$
Question Number 35213 Answers: 0 Comments: 0
$${find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left(\lambda{x}^{\mathrm{2}} \right){dx}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{sin}\left(\lambda{x}^{\mathrm{2}} \right){dx}\:{with}\:\lambda>\mathrm{0}\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}\:{and}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{2}} \right){dx}\left(\:{integrals}\:{of}\:{fresnel}\right) \\ $$
Pg 1673 Pg 1674 Pg 1675 Pg 1676 Pg 1677 Pg 1678 Pg 1679 Pg 1680 Pg 1681 Pg 1682
Terms of Service
Privacy Policy
Contact: info@tinkutara.com