Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1678
Question Number 37642 Answers: 1 Comments: 0
$$\mathrm{3}^{\mathrm{3}\sqrt{\mathrm{250}}+\mathrm{7}^{\mathrm{3}\sqrt{\mathrm{16}}−\mathrm{4}^{\mathrm{3}\sqrt{\mathrm{54}}} } } \\ $$
Question Number 37636 Answers: 1 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{6}} \left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right){e}^{\left[−\mathrm{2}{x}\right]} {dx}\:. \\ $$
Question Number 37635 Answers: 0 Comments: 1
$${let}\:{a}>\mathrm{0}\:\:{find}\:{the}\:{value}\:{of}\: \\ $$$${f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{+\infty} \:{e}^{−\left({t}^{\mathrm{2}} \:\:+\frac{{a}}{{t}^{\mathrm{2}} }\right)} {dt}\: \\ $$
Question Number 37634 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{+\infty} \:\:{e}^{−\left({t}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)} {dt} \\ $$
Question Number 37633 Answers: 1 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{+\infty} \left[\:\:{x}\:{e}^{−{x}} \right]{dx} \\ $$
Question Number 37632 Answers: 1 Comments: 1
Question Number 37627 Answers: 3 Comments: 0
$$\mathrm{Given}\:\left\{{x}\right\}\:=\:{x}\:−\:\lfloor{x}\rfloor \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{from}\:\mathrm{equation} \\ $$$$\left\{{x}\right\}\:+\:\left\{{x}^{\mathrm{2}} \right\}\:=\:\mathrm{1} \\ $$$$\mathrm{with}\:−\mathrm{10}\:\leqslant\:{x}\:\leqslant\:\mathrm{10}\:? \\ $$
Question Number 37602 Answers: 0 Comments: 4
$${find}\:{the}\:{value}\:{of} \\ $$$${f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}^{\mathrm{4}} \:\:\:+{a}^{\mathrm{4}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{x}^{\mathrm{2}} \:−\mathrm{1}}{\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 37601 Answers: 0 Comments: 2
$${let}\:{give}\:{n}\:{inyehr}\:{natural}\geqslant\mathrm{1}\:{find}\:{tbe}\:{value}\:{of} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}\:} +\mathrm{2}\right)....\left({x}^{\mathrm{2}} \:+{n}\right)} \\ $$
Question Number 37600 Answers: 2 Comments: 0
$${n}\:{integr}\:{natural}\:{calculate} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)......\left({x}+{n}\right)} \\ $$
Question Number 37591 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{circle}}\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{y}}−\mathrm{8}=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} −\mathrm{24}\boldsymbol{{x}}+\boldsymbol{{hy}}=\mathrm{0}\:\boldsymbol{\mathrm{cut}}\:\boldsymbol{\mathrm{orthogonally}}, \\ $$$$\boldsymbol{\mathrm{determine}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{{h}}. \\ $$$$ \\ $$
Question Number 37587 Answers: 2 Comments: 2
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dx}}{\mathrm{2}{cos}^{\mathrm{2}} {x}\:+\sqrt{\mathrm{3}}\:{sin}^{\mathrm{2}} {x}} \\ $$
Question Number 37582 Answers: 1 Comments: 3
Question Number 37579 Answers: 1 Comments: 0
$${a}=\frac{−\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:\:{with}\:{x}=\mathrm{1}\:{and}\:{v}=\mathrm{0}\:{at}\:{t}=\mathrm{0} \\ $$$${find}\:{time}\:{that}\:{particle}\:{takes}\:{to} \\ $$$${reach}\:{x}=\mathrm{0}.\mathrm{25}{m}\:. \\ $$
Question Number 37568 Answers: 2 Comments: 0
$${let}\:\alpha\:{and}\:\beta\:{the}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${x}^{\mathrm{2}} \:−\mathrm{2}{mx}\:−\mathrm{1}\:=\mathrm{0}\:\:{find}\:{interms}\:{of}\:{the}\:{real}\:{m} \\ $$$${A}\:=\:\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \\ $$$${B}\:=\alpha^{\mathrm{3}} \:+\beta^{\mathrm{3}} \\ $$$${c}\:=\alpha^{\mathrm{4}} \:+\beta^{\mathrm{4}} \\ $$$${D}=\:\alpha^{\mathrm{6}} \:+\beta^{\mathrm{6}} \\ $$
Question Number 37553 Answers: 0 Comments: 2
Question Number 37517 Answers: 1 Comments: 5
Question Number 37485 Answers: 2 Comments: 1
Question Number 37464 Answers: 1 Comments: 2
$$\mathrm{36}\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{2}} -\mathrm{42}\boldsymbol{{x}}^{\mathrm{3}} \boldsymbol{{y}}^{\mathrm{3}} +\mathrm{24}\boldsymbol{{x}}^{\mathrm{5}} \boldsymbol{{y}}^{\mathrm{4}} \\ $$
Question Number 37462 Answers: 1 Comments: 0
$$\mathrm{If}\:{x}+\mathrm{3}\:\mathrm{is}\:\mathrm{the}\:\mathrm{common}\:\mathrm{factor}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{expressions}\:{ax}^{\mathrm{2}} +{bx}+\mathrm{1}\:\mathrm{and}\: \\ $$$${px}^{\mathrm{2}} +{qx}−\mathrm{3},\:\mathrm{then}\:\frac{−\left(\mathrm{9}{a}+\mathrm{3}{p}\right)}{\mathrm{3}{b}+{q}}\:=\:\_\_\_\_. \\ $$
Question Number 37451 Answers: 2 Comments: 1
$$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \frac{{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta{d}\theta}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta+{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta}}\:=\:? \\ $$
Question Number 37449 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{3}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}}{\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}}}\:{dx}= \\ $$
Question Number 37447 Answers: 2 Comments: 5
Question Number 37432 Answers: 2 Comments: 0
$$\int\frac{{d}\alpha}{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}\:\alpha\:+\mathrm{2cot}\:\frac{\alpha}{\mathrm{2}}}=? \\ $$$$\int\frac{{d}\beta}{\mathrm{2tan}\:\frac{\beta}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cot}\:\beta}=? \\ $$
Question Number 37425 Answers: 1 Comments: 0
$$\int\frac{{x}^{\mathrm{5}} −\mathrm{3}{x}^{\mathrm{4}} −\mathrm{23}{x}^{\mathrm{3}} +\mathrm{51}{x}^{\mathrm{2}} +\mathrm{94}{x}−\mathrm{120}}{\mathrm{8}{x}^{\mathrm{3}} \sqrt{\mathrm{42}+{x}−{x}^{\mathrm{2}} }}{dx}=? \\ $$
Question Number 37424 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{{Z}}\left(\boldsymbol{{x}},\boldsymbol{{t}}\right)\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{Z}}_{\boldsymbol{\mathrm{n}}} =\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{t}}\:\:\boldsymbol{\mathrm{subjected}}\:\boldsymbol{{Z}}\left(\boldsymbol{{x}},\mathrm{0}\right)=\boldsymbol{{x}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{{Z}}\left(\mathrm{1},\boldsymbol{{t}}\right)=\boldsymbol{\mathrm{cos}{t}} \\ $$
Pg 1673 Pg 1674 Pg 1675 Pg 1676 Pg 1677 Pg 1678 Pg 1679 Pg 1680 Pg 1681 Pg 1682
Terms of Service
Privacy Policy
Contact: info@tinkutara.com