Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1677

Question Number 32331    Answers: 0   Comments: 0

p is a polynomial having n simples roots (x_i )_(1≤i≤n) prove that Σ_(k=1) ^n (1/(p^′ (x_k ))) =0

$${p}\:{is}\:{a}\:{polynomial}\:{having}\:{n}\:{simples}\:{roots}\:\left({x}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \\ $$$${prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{p}^{'} \left({x}_{{k}} \right)}\:=\mathrm{0} \\ $$

Question Number 32330    Answers: 0   Comments: 1

let p_n (x)=(x+1)^(6n+1) −x^(6n+1) −1 with n integr prove that ∀n (x^2 +x+1)^2 divide p_n (x).

$${let}\:{p}_{{n}} \left({x}\right)=\left({x}+\mathrm{1}\right)^{\mathrm{6}{n}+\mathrm{1}} \:−{x}^{\mathrm{6}{n}+\mathrm{1}} \:−\mathrm{1}\:{with}\:{n}\:{integr} \\ $$$${prove}\:{that}\:\forall{n}\:\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} \:{divide}\:{p}_{{n}} \left({x}\right). \\ $$

Question Number 32329    Answers: 2   Comments: 0

The smallest number which must be subtracted from 3400 to make it a perfect cube is _____.

$$\mathrm{The}\:\mathrm{smallest}\:\mathrm{number}\:\mathrm{which}\:\mathrm{must}\:\mathrm{be} \\ $$$$\mathrm{subtracted}\:\mathrm{from}\:\mathrm{3400}\:\mathrm{to}\:\mathrm{make}\:\mathrm{it}\:\mathrm{a}\: \\ $$$$\mathrm{perfect}\:\mathrm{cube}\:\mathrm{is}\:\_\_\_\_\_. \\ $$

Question Number 32328    Answers: 0   Comments: 0

prove that 2^(n+1) divide A_n =[(1+(√3) )^(2n+1) ].

$${prove}\:{that}\:\mathrm{2}^{{n}+\mathrm{1}} \:{divide}\:\:{A}_{{n}} =\left[\left(\mathrm{1}+\sqrt{\mathrm{3}}\:\right)^{\mathrm{2}{n}+\mathrm{1}} \right]. \\ $$

Question Number 32326    Answers: 0   Comments: 0

simplify Σ_(k=p) ^(2p) (C_k ^p /2^k ) .

$${simplify}\:\:\sum_{{k}={p}} ^{\mathrm{2}{p}} \:\:\:\:\:\frac{{C}_{{k}} ^{{p}} }{\mathrm{2}^{{k}} }\:. \\ $$

Question Number 32323    Answers: 1   Comments: 0

Given f(x) = (3/(16))(∫_0 ^1 f(x)dx)x^2 − (9/(10))(∫_0 ^2 f(x)dx)x + 2(∫_0 ^3 f(x)dx) + 4 Find f(x)

$$\mathrm{Given} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{3}}{\mathrm{16}}\left(\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\right){x}^{\mathrm{2}} \:−\:\frac{\mathrm{9}}{\mathrm{10}}\left(\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({x}\right){dx}\right){x}\:+\:\mathrm{2}\left(\int_{\mathrm{0}} ^{\mathrm{3}} {f}\left({x}\right){dx}\right)\:+\:\mathrm{4} \\ $$$$\mathrm{Find}\:{f}\left({x}\right) \\ $$

Question Number 32316    Answers: 0   Comments: 4

A gas expands according to the law pv=constant,where p is the pressure and v is the volume of the gas.Initially,v=1000m^3 and p=40N/m^2 .If the pressure is decreased at the rate of 5Nm^(−2) min^(−1) find the rate at which the gas is expanding when its volume is 2000m^(3.)

$${A}\:{gas}\:{expands}\:{according}\:{to}\:{the} \\ $$$${law}\:{pv}={constant},{where}\:{p}\:{is}\:{the} \\ $$$${pressure}\:{and}\:{v}\:{is}\:{the}\:{volume}\:{of} \\ $$$${the}\:{gas}.{Initially},{v}=\mathrm{1000}{m}^{\mathrm{3}} \:{and} \\ $$$${p}=\mathrm{40}{N}/{m}^{\mathrm{2}} .{If}\:{the}\:{pressure}\:{is} \\ $$$${decreased}\:{at}\:{the}\:{rate}\:{of}\:\mathrm{5}{Nm}^{−\mathrm{2}} {min}^{−\mathrm{1}} \\ $$$${find}\:{the}\:{rate}\:{at}\:{which}\:{the}\:{gas}\:{is} \\ $$$${expanding}\:{when}\:{its}\:{volume}\:{is} \\ $$$$\mathrm{2000}{m}^{\mathrm{3}.} \\ $$

Question Number 32313    Answers: 0   Comments: 0

If y=sinx then show that (d^n y/dx^n )=sin(x+((nπ)/2))

$${If}\:{y}={sinx}\:{then}\:{show}\:{that} \\ $$$$\frac{{d}^{{n}} {y}}{{dx}^{{n}} }={sin}\left({x}+\frac{{n}\pi}{\mathrm{2}}\right) \\ $$

Question Number 32312    Answers: 1   Comments: 1

A small ball is dropped from a height of 1m into a horizontal floor.Each time it rebounces to 3/5 of the height it has fallen. a)show that when the ball strikes the ground for the third time ,it has travelled a distance of 2.92m b)Show that the total distance travelled by the ball cant exceed 4m.

$${A}\:{small}\:{ball}\:{is}\:{dropped}\:{from}\:{a}\: \\ $$$${height}\:{of}\:\mathrm{1}{m}\:{into}\:{a}\:{horizontal} \\ $$$${floor}.{Each}\:{time}\:{it}\:{rebounces}\:{to} \\ $$$$\mathrm{3}/\mathrm{5}\:{of}\:{the}\:{height}\:{it}\:{has}\:{fallen}. \\ $$$$\left.{a}\right){show}\:{that}\:{when}\:{the}\:{ball}\:{strikes} \\ $$$${the}\:{ground}\:{for}\:{the}\:{third}\:{time}\:,{it} \\ $$$${has}\:{travelled}\:{a}\:{distance}\:{of}\:\mathrm{2}.\mathrm{92}{m} \\ $$$$\left.{b}\right){Show}\:{that}\:{the}\:{total}\:{distance} \\ $$$${travelled}\:{by}\:{the}\:{ball}\:{cant}\:{exceed} \\ $$$$\mathrm{4}{m}. \\ $$

Question Number 32309    Answers: 0   Comments: 0

Question Number 32308    Answers: 1   Comments: 0

Question Number 32307    Answers: 0   Comments: 0

Question Number 32306    Answers: 0   Comments: 0

Question Number 32305    Answers: 1   Comments: 1

find ∫_1 ^e sin(ln(x))dx .

$${find}\:\int_{\mathrm{1}} ^{{e}} \:{sin}\left({ln}\left({x}\right)\right){dx}\:. \\ $$

Question Number 32304    Answers: 0   Comments: 0

find lim_(x→+∞) e^(−x^2 ) ∫_0 ^x e^t^2 dt .

$${find}\:{lim}_{{x}\rightarrow+\infty} \:\:{e}^{−{x}^{\mathrm{2}} } \:\int_{\mathrm{0}} ^{{x}} \:\:{e}^{{t}^{\mathrm{2}} } {dt}\:\:. \\ $$

Question Number 32303    Answers: 0   Comments: 1

find lim_(n→∞) Σ_(k=1) ^n (1/(2n+k)) .

$${find}\:{lim}_{{n}\rightarrow\infty} \:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{2}{n}+{k}}\:\:. \\ $$

Question Number 32302    Answers: 1   Comments: 0

calculate ∫_1 ^2 (dx/(x +x(√x))) .

$${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\:\frac{{dx}}{{x}\:+{x}\sqrt{{x}}}\:. \\ $$

Question Number 32301    Answers: 0   Comments: 1

calculate ∫_1 ^e ln(1+(√x))dx .

$${calculate}\:\int_{\mathrm{1}} ^{{e}} \:{ln}\left(\mathrm{1}+\sqrt{{x}}\right){dx}\:. \\ $$

Question Number 32300    Answers: 0   Comments: 0

calculate Σ_(n=0) ^∞ n^2 e^(inθ) 2) find Σ_(n=0) ^∞ n^2 cos(nθ) and Σ_(n=0) ^∞ n^2 sin(nθ)=.

$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} {n}^{\mathrm{2}} \:{e}^{{in}\theta} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{n}^{\mathrm{2}} {cos}\left({n}\theta\right)\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{n}^{\mathrm{2}} {sin}\left({n}\theta\right)=. \\ $$

Question Number 32299    Answers: 0   Comments: 0

find tbe nature of the serie Σ_(n≥1) ((e^(1/n) +e^(−(1/n)) )/n) .

$${find}\:{tbe}\:{nature}\:{of}\:{the}\:{serie}\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{{e}^{\frac{\mathrm{1}}{{n}}} \:\:+{e}^{−\frac{\mathrm{1}}{{n}}} }{{n}}\:. \\ $$$$ \\ $$

Question Number 32298    Answers: 0   Comments: 1

find tbe nature of Σ_(n≥2) (1/(n(ln(n))^2 )) .

$${find}\:{tbe}\:{nature}\:{of}\:\:\sum_{{n}\geqslant\mathrm{2}} \:\:\:\frac{\mathrm{1}}{{n}\left({ln}\left({n}\right)\right)^{\mathrm{2}} }\:. \\ $$

Question Number 32297    Answers: 0   Comments: 0

calculate Σ_(n≥0) ((n+2^n )/(n!)) .

$${calculate}\:\sum_{{n}\geqslant\mathrm{0}} \:\frac{{n}+\mathrm{2}^{{n}} }{{n}!}\:\:. \\ $$

Question Number 32296    Answers: 0   Comments: 0

let u_n = (((n+1)^α −n^α )/n^(α−1) ) with α>1 find lim_(n→∞) u_n .

$${let}\:\:{u}_{{n}} =\:\frac{\left({n}+\mathrm{1}\right)^{\alpha} \:\:−{n}^{\alpha} }{{n}^{\alpha−\mathrm{1}} }\:\:{with}\:\alpha>\mathrm{1}\:\:{find}\:{lim}_{{n}\rightarrow\infty} {u}_{{n}} \:\:. \\ $$

Question Number 32295    Answers: 0   Comments: 2

calculate Σ_(k=0) ^n (2k+1)(−1)^k .

$${calculate}\:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(\mathrm{2}{k}+\mathrm{1}\right)\left(−\mathrm{1}\right)^{{k}} \:\:. \\ $$

Question Number 32294    Answers: 0   Comments: 1

let u_1 =1 and u_2 =2 and u_n =u_(n−1) +u_(n−2) find u_n interms of n .

$${let}\:{u}_{\mathrm{1}} =\mathrm{1}\:{and}\:{u}_{\mathrm{2}} =\mathrm{2}\:{and}\:{u}_{{n}} ={u}_{{n}−\mathrm{1}} \:+{u}_{{n}−\mathrm{2}} \\ $$$${find}\:{u}_{{n}} \:{interms}\:{of}\:{n}\:. \\ $$

Question Number 32293    Answers: 1   Comments: 1

let u_0 = (√3) and u_(n+1) =(√(2+u_n ^2 )) calculate u_n interms of n.

$${let}\:{u}_{\mathrm{0}} =\:\sqrt{\mathrm{3}}\:\:{and}\:{u}_{{n}+\mathrm{1}} =\sqrt{\mathrm{2}+{u}_{{n}} ^{\mathrm{2}} } \\ $$$${calculate}\:{u}_{{n}} \:{interms}\:{of}\:{n}. \\ $$

  Pg 1672      Pg 1673      Pg 1674      Pg 1675      Pg 1676      Pg 1677      Pg 1678      Pg 1679      Pg 1680      Pg 1681   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com